Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 10
  • Item
    Thumbnail Image
    Electrical stimulation of residual hearing in the implanted cochlea
    Clark, Graeme M. ; McAnally, K. I. ; Black, R. C. ; Shepherd, R. K. ( 1995)
    The average profoundly deaf person using a cochlear implant can now understand more speech than some severely to profoundly deaf people who use a hearing aid. For this reason there will be an increasing need to consider implanting people with residual hearing. In many of these people there could be significant hearing in the operated ear, as a majority of severely to profoundly deaf people are likely to have a symmetrical hearing loss. When three frequency average hearing thresholds were measured on 219 pensioners from the Australian National Acoustic Laboratories (H. Dillon, unpublished findings), 64% had less than a 10-dB difference between thresholds in each ear.
  • Item
    Thumbnail Image
    Cochlear implantation: osteoneogenesis, electrode-tissue impedance, and residual hearing
    Clark, Graeme M. ; Shute, S. A. ; Shepherd, R. K. ; Carter, T. D. ( 1995)
    This study was undertaken to find out how new bone is produced in the implanted cochlea, and the effects of fibrous tissue and new bone growth on electrode-tissue impedance. This knowledge is essential, as bone and fibrous tissue in the cochlea could account for variations in patients' speech perception performance. The study was also carried out to examine the effects of implantation on residual hearing. This information is also important, as cochlear implant speech perception results in profoundly deaf people are now better on average than severely or profoundly deaf people obtain with a hearing aid. Consequently, more people will need to be considered for cochlear implantation in ears with some residual hearing. In this case we need to know to what extent residual hearing is affected by implantation. (From Introduction)
  • Item
    Thumbnail Image
    Temporal coding of frequency: neuron firing probabilities for acoustic and electric stimulation of the auditory nerve
    Clark, Graeme M. ; Carter, T. D. ; Maffi, C. L. ; Shepherd, R. K. ( 1995)
    A better understanding of the temporal coding of frequency, and its application to electrical stimulation of auditory nerve fibers, should lead to advances in cochlear implant speech processing. Past research studies have suggested that the intervals between nerve action potentials are important in the temporal coding of frequency. For sound frequencies up to approximately 500 Hz, the shortest or predominant intervals between the nerve action potentials are usually the same as the periods of the sound waves. The intervals between each nerve action potential can be plotted as an interval histogram. Although there is evidence that the intervals between spikes are important in the temporal coding of frequency, it is not known up to what frequency this applies. It is also not known whether the information transmitted along individual fibers or an ensemble of fibers is important, to what extent the coding of frequency is interrelated with the coding of intensity, the relative importance of temporal and place coding for different frequencies, and finally, how well electrical stimulation can simulate the temporal coding of sound.
  • Item
    Thumbnail Image
    A physiological investigation of chronic electrical stimulation with scala tympani electrodes in kittens
    Ni, Daofeng ; Shepherd, Robert K. ; Clark, Graeme M. ( 1992)
    A physiological investigation of cochlear electrical stimulation was undertaken in six two-month-old kittens. The scala tympani electrodes were implanted and electrically stimulated using biphasic balanced electrical pulses' for periods of 1000-1500h in four ears. Four ears received implants for same period but without electrical stimulation. The other two ears served as normal control. The results indicated: 1) Chronic electrical stimulation of the cochlea within electrochemically safe limits did not influence the hearing of kittens and the normal delivery of impulses evoked by acoustic and electrical signals on the auditory brainstem pathway. 2) The wave shapes of EABRs were similar to those of ABRs. The aptitudes of EABRs showed a significant increase following chronic electrical stimulation, resulting in a leftward shift in the input/ output function. The absolute latencies and interwave latencies of waves II-III , III -IV and II -IV were significantly shorter than those of ABRs. These results imply that there was no adverse effect of chronic electrical stimulation on the maturing auditory systems of kittens using these electrical parameters and the mechanism of electrical hearing should be further studied.
  • Item
    Thumbnail Image
    Responses of cat auditory nerve fibers to biphasic electrical current pulses
    Javel, E. ; Tong, Y. C. ; Shepherd, R. K. ; Clark, Graeme M. ( 1987)
    Discharge patterns of single auditory nerve fibers were recorded from normal-hearing cats implanted with a I2-band intracochlear electrode array. Stimuli were biphasic current pulses of specifiable width, amplitude, and rate. Acoustic tuning curves were obtained to determine the cochlear positions of the fibers. Response latencies to electrical stimuli formed two groups. Short latency (0.3 to 0.7 ms) responses were attributed to direct activation of spiral ganglion neurons. At high stirnulus intensities, these often exhibited abrupt shifts toward even shorter latencies. Long latency (> 1.5 ms) responses were probably caused by electrophonic activation of functional hair cells. Response thresholds to electrical stimuli depended on a fiber's proximity to the stimulating electrodes, and they did not depend on a fiber's acoustic response threshold or spontaneous discharge rate. High intensity (> 1.5 mA) stimuli could excite fibers over a wide range of characteristic frequencies, even for the narrowest (0.45 mm) electrode separations. Response threshold was an exponentially decreasing function of pulse width for widths up to 300µs/phase. Fiber discharges were highly phase-locked at all suprathreshold intensities, and saturation discharge rates usually equaled stimulus pulse rates for rates up to at least 800 pulses/s. Dynamic ranges were small (I to 6 dB), increased with pulse rate, and were uncorrelated with electrical response threshold. Within the dynamic range, shapes of poststimulus time and interspike interval histograms resembled those obtained in response to acoustic stimuli. Depolarization block caused fiber activity to cease in 2 to 5 seconds for sustained stimuli presented at high (> 600 pulses/s) pulse rates and intensities.
  • Item
    Thumbnail Image
    Middle ear infection postimplantation: response of the round window membrane to Streptococcus pyogenes
    Cranswick, N. E. ; Franz, B. K-H. ; Clark, Graeme M. ; Shepherd, R. K. ; Bloom, D. M. ( 1987)
    The seal of the implanted round window membrane to resist Streptococcus pyogenes invasion from the middle ear was investigated in 12 cats. Results showed that the implanted round window membrane is able to form a barrier for S pyogenes starting 1 week postimplantation. Under normal conditions S pyogenes did not pass through the round window membrane, nor through the gap that existed between the membrane and the prosthesis. Mechanical disruption of the round window seal, however, and severe inflammatory response to S pyogenes caused the infection to extend into the inner ear.
  • Item
    Thumbnail Image
    Pneumococcal middle ear infection and cochlear implantation
    Berkowitz, R. G. ; Franz, B. K-H. ; Shepherd, R. K. ; Clark, Graeme M. ; Bloom, D. M. ( 1987)
    A limited study for the experimental induction of pneumococcal otitis media is presented. It is a useful model to study the effects of otitis media in the implanted and nonimplanted cochlea of the cat. Pneumococcal otitis media caused minor pathological changes in two nonimplanted cochleas and more widespread changes together with significant loss of neural elements in two implanted cochleas. However, the small number of animals used in this study did not allow us to distinguish between the effects of electrode insertion trauma, infection, or the combination of both.
  • Item
    Thumbnail Image
    Cochlear implantation in young children: long-term effects of implantation on normal hair cells and spiral ganglion cells in the monkey model [Abstract]
    Burton, Martin J. ; Shepherd, R. K. ; Xu, S-A. ; Clark, Graeme M. ( 1992)
    Recent independent results obtained by profoundly deaf children implanted with the Melbourne 22-channel cochlear implant (1) have provided further impetus. for examining thefeasibility of implanting children under two and children with profound deafness. Safety st1,ldies, in appropriate animal models, must first establish the safety of this procedure.
  • Item
    Thumbnail Image
    Clinical results for children using the 22-channel cochlear prosthesis [Abstract]
    Dowell, Richard C. ; Clark, Graeme M. ; Shepherd, Robert K. ( 1991)
    Twenty five profoundly/totally hearing-impaired children aged between 2 and 18 years have been implanted with the 22-channel cochlear prosthesis (Cochlear Pty. Ltd.) at The University of Melbourne over the last five years. Speech perception, speech production and language development have been monitored for these children both pre- and postoperatively. Results have shown improvements for all children in speech perception, postoperatively. The younger children (< 12 years) and those with an acquired (postlinguistic) profound hearing loss, have demonstrated some open-set speech recognition without visual clues. In general, older children with a prelinguistic profound hearing loss have not attained this level of performance. Improvements in speech production and language have also been demonstrated and tend to occur faster in younger children. Importantly, a number of congenitally deaf young children have shown significant improvements in speech perception, production and language. Important factors in the success of cochlear implants in children appear to be: educational environment - it is vital to have a strong auditory component (i.e. non-signing); careful attention to correct programming and maintenance of the prosthesis; support of family and other professionals.
  • Item
    Thumbnail Image
    The histopathology of the human temporal bone following cochlear implantation in a patient: a summary
    Clark, Graeme M. ; Shepherd, R. K. ; Webb, R. L. ; Franz, B. K-H. ( 1987)
    The macroscopic and microscopic evaluation of the implanted and unimplanted temporal bones in a patient who had a cochlear prosthesis for 27 months prior to his death from cardiac disease has shown that the device is biocompatible, and does not lead to any significant adverse effects. The cause of deafness was meningitis.