Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 12
  • Item
    Thumbnail Image
    Initial investigation of the efficacy and biosafety of sodium hyaluronate (healon) as an aid to electrode array insertion
    Donnelly, M. J. ; Cohen, L. T. ; Clark, Graeme M. ( 1995)
    Stimulation of residual neural elements by electrodes inserted into the cochlea to produce the perception of speech and environmental sounds in profoundly deaf people is a fundamental aim of cochlear implantation. The multiple-channel cochlear implant utilizes the tonotopic arrangement of the organ of Corti to also achieve place pitch perception by stimulating different electrode bands. It may be possible to improve the range of pitches perceived by present cochlear implant patients by inserting the electrode array more deeply. To help achieve this, investigators have used sodium hyaluronate as a lubricant for electrode insertions. 1 It was felt deeper insertions were produced with sodium hyaluronate. Before introducing this substance as part of the surgical protocol for the Melbourne Cochlear Implant Clinic, it was decided to investigate its efficacy in aiding deeper insertions of the electrode. In addition, it was also necessary to determine if sodium hyaluronate, in conjunction with cochlear implantation, had adverse effects on the inner ear. This study was undertaken to address these issues.
  • Item
    Thumbnail Image
    Vowel imitation task: results over time for 28 cochlear implant children under the age of eight years
    Dettman, S. J. ; Barker, E. J. ; Dowell, R. C. ; Dawson, P. W. ; Blamey, P. J. ; Clark, Graeme M. ( 1995)
    With increasing numbers of implanted children under the age of 4 years, numerous researchers have reminded us of the need for valid, sensitive, and reliable tests of developing speech perception.1,2 In addition to studies of the efficacy of implanted prostheses, there is a need to investigate the many variables that influence children's communicative performance, such as changes in speech-coding strategy, updated speech-processing systems, the effects of various training regimens, and the selection of educational and communication modes.
  • Item
    Thumbnail Image
    Speech perception in children using the advanced Speak speech-processing strategy
    Cowan, R. S. C. ; Brown, C. ; Whitford, L. A. ; Galvin, K. L. ; Sarant, J. Z. ; Barker, E. J. ; Shaw, S. ; King, A. ; Skok, M. ; Seligman, P. M. ; Dowell, R. C. ; Everingham, C. ; Gibson, W. P. R. ; Clark, Graeme M. ( 1995)
    The Speak speech-processing strategy, developed by the University of Melbourne and commercialized by Cochlear Pty Limited for use in the new Spectra 22 speech processor, has been shown to provide improved speech perception for adults in both quiet and noisy situations. The present study evaluated the ability of children experienced in the use of the Multipeak (Mpeak) speech-processing strategy (implemented in the Nucleus Minisystem-22 cochlear implant) to adapt to and benefit from the advanced Speak speech-processing strategy (implemented in the Nucleus Spectra 22 speech processor). Twelve children were assessed using Mpeak and Speak over a period of 8 months. All of the children had over 1 year's previous experience with Mpeak, and all were able to score significantly on open-set word and sentence tests using the cochlear implant alone. Children were assessed with both live-voice and recorded speech materials, including Consonant-Nucleus-Consonant monosyllabic words and Speech Intelligibility Test sentences. Assessments were made in both quiet and in noise. Assessments were made at 3-week intervals to investigate the ability of the children to adapt to the new speech-processing strategy. For most of the children, a significant advantage was evident when using the Speak strategy as compared with Mpeak. For 4 of the children, there was no decrement in speech perception scores immediately following fitting with Speak. Eight of the children showed a small (10% to 20%) decrement in speech perception scores for between 3 and 6 weeks following the changeover to Speak. After 24 weeks' experience with Speak, 11 of the children had shown a steady increase in speech perception scores, with final Speak scores higher than for Mpeak. Only 1 child showed a significant decrement in speech perception with Speak, which did not recover to original Mpeak levels.
  • Item
    Thumbnail Image
    Cochlear implantation: osteoneogenesis, electrode-tissue impedance, and residual hearing
    Clark, Graeme M. ; Shute, S. A. ; Shepherd, R. K. ; Carter, T. D. ( 1995)
    This study was undertaken to find out how new bone is produced in the implanted cochlea, and the effects of fibrous tissue and new bone growth on electrode-tissue impedance. This knowledge is essential, as bone and fibrous tissue in the cochlea could account for variations in patients' speech perception performance. The study was also carried out to examine the effects of implantation on residual hearing. This information is also important, as cochlear implant speech perception results in profoundly deaf people are now better on average than severely or profoundly deaf people obtain with a hearing aid. Consequently, more people will need to be considered for cochlear implantation in ears with some residual hearing. In this case we need to know to what extent residual hearing is affected by implantation. (From Introduction)
  • Item
    Thumbnail Image
    A new portable sound processor for the University of Melbourne/ Nucleus Limited multielectrode cochlear implant
    McDermott, Hugh J. ; McKay, Colette M. ; Vandali, Andrew E. ( 1992)
    Abstract not available due to copyright.
  • Item
    Thumbnail Image
    Speech perception in implanted children: effects of speech processing strategy and residual hearing
    Meskin, T. ; Rance, G. ; Cody, K. ; Sarant, J. ; Larratt, M. ; Latus, K. ; Hollow, R. ; Rehn, C. ; Dowell, R.C. ; Pyman, B. ; Gibson, W.P.R. ; Clark, Graeme M. ; Cowan, Robert S. C. ; Barker, E. J. ; Pegg, P. ; Dettman, S. ; Rennie, M. ; Galvin, K. (Mendoza Editor, 1997)
    The ability of implanted children to adapt to different speech processing strategies has been demonstrated for the Nucleus implant system. Children previously experienced with the Multipeak speech processing strategy. were able to gain significant improvements in consonant, word and sentence perception using the Speak speech processing strategy. suggesting some degree of neural plasticity in neural-auditory coding. Of 192 implanted children with different degrees of preoperative residual hearing, 65% were found to obtain significant scores on open-set speech materials using electrical stimulation alone. Those children with more residual hearing had a greater probability of achieving open-set understanding and at a minimum level, perceived high frequency consonant information which would not have been available through conventional hearing aids.
  • Item
    Thumbnail Image
    Speech perception in implanted children: effects of preoperative residual hearing and speech processing strategy [Abstract]
    Meskin, T. ; Rance, G. ; Cody, K. ; Sarant, J. ; Larratt, M. ; Latus, K. ; HOLLOW, RODNEY ; Rehn, C. ; Dowell, R.C. ; Pyman, B. ; Gibson, W.P.R. ; Clark, Graeme M. ; Cowan, Robert S. C. ; Barker, E. J. ; Pegg, P. ; Dettman, S. ; Rennie, M. ; Galvin, K. ( 1997)
    Since the first child was implanted with the Nucleus 22-channel cochlear prosthesis in Melbourne in 1985, the number of implanted children world-wide has rapidly expanded. Over this period, more effective paediatric assessment and management procedures have developed, allowing cochlear implants to be offered to children under the age of 2 years. In addition, a succession of improved speech processing strategies have been implemented in the Nucleus implant system, resulting in increased mean speech perception benefits for implanted adults. Research in the Melbourne and Sydney Cochlear Implant Clinics has also demonstrated that young children can adapt to and benefit from improved speech processing strategies such as the Speak strategy. Reported speech perception results for implanted children show that a considerable proportion (60%) of paediatric patients in the Melbourne and Sydney clinics are able to understand some open set speech using electrical stimulation alone. These results, and the upward trend of speech perception benefits to improve over time with advances in speech processing. have raised questions as to whether severely, or severely-to-profoundly deaf children currently using hearing aids would in fact benefit more from a cochlear implant. To investigate the potential effect of the level of preoperative residual hearing on postoperative speech perception. results for all implanted children in the Melbourne and Sydney cochlear implant programs were analysed. Results showed that as 8 group, children with higher levels of preoperative residual hearing were consistently more likely to achieve open-set speech perception benefits. Potential factors in this finding could be higher levels of ganglion cell survival or greater patterning of the auditory pathways using conventional hearing aids prior to implantation. Conversely, children with the least preoperative residual hearing were less predictable, with some children achieving open-set perception, and others showing more limited closed-set benefits to perception. For these children, it is likely that preoperative residual hearing is of less significance than other factors in outcomes.
  • Item
    Thumbnail Image
    An extension of the Multipeak speech processing strategy for the MSP/MINI 22 cochlear implant system
    Jones, P. A. ; McDermott, H. J. ; Sellgman, P. M. ; Millar, J. B. ( 1992)
    The speech perception of three post-linguistically deaf adults using the Nucleus MSP/Mini System 22 cochlear implant system programmed with a new speech processing strategy, MPEAK+AO. was evaluated. The MPEAK+AO strategy retains all the information of the standard Multipeak speech processing strategy and additionally presents acoustic components below 400Hz to the most-apical electrode. This extra spectral Information may help implantees understand speech, particularly in noise. Since the estimated fundamental frequency is presented as the rate of stimulation at a fixed intracochlear site and is thereby potentially perceived more easily. and the amplitude of the stimulation on the apical electrode, associated with the voice fundamental, Is directly determined from the estimated energy in the relevant spectral region. these coding factors may provide a better representation ot the prosodic information in speech and a more complete auditory feedback signal. The comparison between Multipeak and MPEAK+AO included tests of vowel, consonant and CNC word recognition. Speech materials were presented with both a male and female speaker. Sentence material. presented with background masking noise (four-speaker babble) was also used. The results showed that the new strategy significantly improved the ability of these MSP users to recognise words in open-set sentences in noisy conditions.
  • Item
    Thumbnail Image
    Future developments in speech processing for multichannel cochlear implants in children [Abstract]
    Dowell, Richard C. ; Dooley, G. ; McDermott, H. D. ; Blamey, P. ; McKay, C. ; Clark, Graeme M. ( 1992)
    The average speech perception score for adult implant patients is now about 60% on an open-set sentence test without lipreading. This is higher than the scores obtained by many profound and severe-to-profoundly impaired hearing aid users. This suggests that some hearing aid users, particularly those who use a hearing aid in one ear only, could benefit from a cochlear implant. As neither the implant nor the hearing aid will provide perfect speech recognition it is to be expected that this group should obtain maximum benefit by using the hearing aid in one ear together with the implant in the other ear. However, experience with this group of patients has shown that many people find the use of two independent devices unacceptable. Furthermore, perceptual interaction of the acoustic and electrical signals makes it desirable to be able to control the two outputs in a more co-ordinated way than is possible with two independent devices. Consequently, a "bimodal" speech processor has been developed with both acoustic and electrical outputs controlled from the same speech processing unit. Feature coding aspects of the implant processing have been applied to the acoustic signal in such a way as to enhance speech perception with the hearing aid and improve compatibility with the implant. Initial testing with the bimodal aid shows promise to help severely-to-profoundly impaired individuals. The device has also been useful as a research tool to investigate the complex interactions of simultaneous acoustic and electrical stimulation. The Spectral Maxima Sound Processor (SMSP) has also been developed at the University of Melbourne for use with the Nucleus cochlear implant. Studies with adult subjects have shown improved perception of vowels, consonants, words and sentences in quiet and sentences in background noise with the SMSP as compared with the MSP(MULTIPEAK) which is currently supplied for use with this implant. Results for four subjects showed mean scores for open set sentences at a 10 dB signal-to-noise ratio of 78.7% for the SMSP and 50.0% for the MSP. Mean scores for the same group on open set monosyllabic words in quiet were 57.4% for SMSP and 39.9% for MSP. These results suggest that future improvements in speech perception will be possible for children using the Nucleus cochlear implant.
  • Item
    Thumbnail Image
    Factors affecting speech perceptual performance for children using the 22-electrode cochlear prosthesis [Abstract]
    Dowell, Richard C. ; Blamey, Peter J. ; Clark, Graeme M. ( 1992)
    Speech perception results for all 40 children and adolescents implanted with the. Nucleus 22 electrode cochlear prosthesis in Melbourne (as of February 1, 1992) were used to categorize performance for each child into one of six hierarchical groups: 1: detection of speech including high frequencies 2: discrimination of suprasegmental features of speech in addition to 1,3: discrimination and recognition of .vowel sounds in addition to 1 and 2,.4: discrimination arid recognition of consonant sounds in addition to 1, 2 and 3,5: open set speech. recognition with scores less than 20% for unfamiliar material in addition to 1 to 4,6: open set speech recognition with scores greater than 20% for unfamiliar material in addition to 1 to 5, above.All children demonstrated discrimination of suprasegmentals (level 2) and 58% demonstrated some openset speech recognition (levels 5 and 6). The pattern of results suggested that children who can discriminate segmental features of speech tend to achieve open set speech perception after adequate experience with the prosthesis. The performance level, described above, was used as the dependent variable in a multiple regression analysis to assess the effect of various factors on speech perception performance. The duration of profound hearing impairment and the amount of experience with the prosthesis were shown to contribute significantly to the variance, in performance level. A weaker trend was evident (or recently implanted children which may suggest that those' in oral/aural educational settings progress more rapidly, in terms of speech perception, than those in total communication settings. Age at implantation, cause of deafness, hearing levels prior to implantation, and number of electrodes in use, did not contribute significantly. to the variance in speech perception performance for these children. The results showed that all children with less than seven years of profound hearing impairment and with over one year of experience with the prosthesis have achieved some open-set speech recognition. This is an encouraging result as the trend in clinical application of cochlear prostheses has been towards implanting younger children in recent years. If this sample of hearing-impaired children in Melbourne is representative of the general population, we may expect that most implanted young children will ,develop reasonable speech perception skills after adequate experience and training.