Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 17
  • Item
    Thumbnail Image
    Contributing factors to improved speech perception in children using the nucleus 22-channel cochlear prosthesis
    Cowan, Robert S. C. ; Galvin, Karyn L. ; KLIEVE, SHARON ; Barker, Elizabeth J. ; Sarant, Julia Z. ; DETTMAN, SHANI ; Hollow, Rod ; RANCE, GARY ; Dowell, Richard C. ; PYMAN, BRIAN ; Clark, Graeme M. ( 1997)
    It has been established that use of multiple-channel intracochlear implants can significantly improve speech perception for postlinguistically deafened adults. In the development of the Nucleus 22-channel cochlear implant, there have been significant developments in speech processing strategies, providing additional benefits to speech perception for users. This has recently culminated in the release of the Speak speech processing strategy, developed from research at the University of Melbourne. The Speak strategy employs 20 programmable bandpass filters which are scanned at an adaptive rate, with the largest outputs of these filters presented to up to ten stimulation channels along the electrode array. Comparative studies of the Speak processing strategy (in the Nucleus Spectra-22 speech processor), with the previously-used Multipeak (Multipeak) speech processing strategy (in the Minisystem-22 speech processor), with profoundly deaf adult cochlear implant users have shown that the Speak processing strategy provides a significant benefit to adult users both in quiet situations and particularly in the presence of background noise. Since the first implantation of the Nucleus device in a profoundly hearing-impaired child in Melbourne in 1985, there has been a rapid growth in the number of children using this device. Studies of cochlear implant benefits for children using the Nucleus 22-channel cochlear implant have also shown that children can obtain significant benefits to speech perception, speech production and language, including open-set understanding of words and sentences using the cochlear implant alone. In evaluating contributing factors to speech perception benefits available for children, four specific factors are important to investigate: (1) earlier implantation -resulting from earlier detection of deafness; (2) improved hardware and surgical techniques -allowing implantation in infants; (3) improved speech processing, and (4) improved habilitation techniques. Results reported previously have been recorded primarily for children using the Multipeak strategy implemented in the MSP speech processor. While it is important to evaluate the factors which might contribute to improvements in speech perception benefits, an important question is the effect of improved speech processing strategy, since this will determine what is perceived through the device. Given that adult patients changing to the Spectra speech processor had also shown improved perception in noisy situations, and the fact that children are in general in noisy environments in the classroom setting for a large proportion of their day, it was of obvious interest to evaluate the potential for benefit in poor signal-to-noise ratios from use of the Speak processing strategy and from specific training in the ability to perceive in background noise. The study was aimed at evaluating whether children who were experienced in use of the Multipeak speech processing strategy would be able to changeover to the new Speak processing strategy, which provides a subjectively different output. Secondly, the study aimed to evaluate the benefits which might accrue to children from use of controlled habilitation in background noise.
  • Item
    Thumbnail Image
    Speech perception results for children with implants with different levels of preoperative residual hearing
    Cowan, Robert S. C. ; DelDot, J. ; Barker, J. Z. ; Barker, Elizabeth J. ; Sarant, Julia Z. ; Pegg, P. ; Dettman, S. ; Galvin, K. L. ; Rance, G. ; Hollow, R. ; Dowell, R. C. ; Pyman, B. ; Gibson, W. P. R. ; Clark, Graeme, M. ( 1997)
    Objective: Many reports have established that hearing-impaired children using the Nucleus 22 channel cochlear implant may show both significant benefits to lipreading and significant scores on open-set words and sentences using electrical stimulation only. These findings have raised questions about whether severely or severely-to-profoundly deaf children should be candidates for cochlear implants. To study this question, postoperative results for implanted children with different levels of preoperative residual hearing were evaluated in terms of speech perception benefits. Study Design/Setting: A retrospective study of the first 117 children, sequentially, to undergo implantation in the Melbourne and Sydney Cochlear Implant Clinics was undertaken. All children had been assessed by and received their implants in a tertiary referral centre. Main Outcome Measures: To assess aided residual hearing, the children were grouped into four categories of hearing on the basis of their aided residual hearing thresholds measured preoperatively. To assess benefits, the scores of children on standard speech perception tests were reviewed. As different tests were used for children with different ages and language skills, children were grouped into categories according to the level of postoperative speech perception benefit. Results: The results showed that children in the higher categories of aided preoperative residual hearing showed significant scores on open-set word and sentence perception tests using the implant alone. For children in lower categories of aided residual hearing, results were variable within the groups. More than 90% of children with implants with aided residual hearing thresholds in the speech range above I kHz achieved open-set understanding of words and sentences. Conclusion: While the results of this preliminary study confirm previous findings of differential outcomes for children with different levels of preoperative residual hearing, they suggest that children with severe to profound hearing impairments should be considered for cochlear implantation.
  • Item
    Thumbnail Image
    Current trends in speech perception performance in adult cochlear implant patients [Abstract]
    Hollow, Rod ; Plant, Kerrie ; Whitford, Lesley ; Skok, Marisa ; DOWELL, RICHARD ; Clark, Graeme M. ( 1996)
    In 1994, Cochlear Pty. Ltd. (Now Cochlear Limited) released a new speech processor, the Spectra 22, for use with the Nucleus 22-channel cochlear implant. The Spectra 22 speech processor incorporates a new speech processing strategy called SPEAK, which is based upon research conducted by the University of Melbourne. This paper reports post-operative scores on open-set word and sentence materials for adult patients in the Melbourne Cochlear Implant Clinic who have been started up with the Spectra 22 speech processor.
  • Item
    Thumbnail Image
    Components of a rehabilitation programme for young children using the multichannel cochlear implant
    DETTMAN, SHANI ; Barker, Elizabeth ; RANCE, GARY ; DOWELL, RICHARD ; GALVIN, KARYN ; SARANT, JULIA ; COWAN, ROBERT ; Skok, Marisa ; Hollow, Rod ; Larratt, Merran ; Clark, Graeme M. (Whurr, 1996)
    Rehabilitation with young hearing-impaired children may be defined as a teaching; learning process where the role of the clinician is to facilitate acquisition of listening, speech and language in a normal developmental order. This is often referred to as habilitation. It differs from rehabilitation for adults, which is the process by which lost communication skills are reacquired. It is worth discussing the role of the cochlear implant as a tool in this process. For the adult with acquired hearing loss, the cochlear implant might be expected, in part, to facilitate rehabilitation by restoring the auditory sense. The aim is to facilitate speech reception and provide the adult with a speech feedback loop. For a child receiving the cochlear implant, the aims are more complex. The device needs to provide speech perception abilities to facilitate the development of the entire linguistic system, to develop a range of speech sounds, to enable speech monitoring via auditory feedback and to access shared knowledge of the world. (From Introduction)
  • Item
    Thumbnail Image
    Continuing improvements in speech processing for adult cochlear implant patients
    Hollow, R. D. ; Dowell, R. C. ; Cowan, R. S. C. ; Skok, M. C. ; Pyman, B. C. ; Clark, Graeme M. ( 1995)
    The Cochlear 22-channel cochlear implant has employed a succession of improved speech-processing strategies since its first use in an adult patient in Melbourne in 1982. 1 The first patients received the F0F2 coding strategy developed by the University of Melbourne, in the Wearable Speech Processor (WSP). The F0F2 coding scheme presented the implant user with three acoustic features of speech. These were 1) the amplitude of the waveform, presented as the amount of current charge, 2) fundamental frequency (F0) or voice pitch, presented as rate of biphasic pulsatile stimulation, and 3) the spectral range of the second formant frequency (F2), which was represented by varying the site of stimulation along the electrode array.
  • Item
    Thumbnail Image
    Issues in long-term management of children with cochlear implants and tactile devices [Abstract]
    COWAN, ROBERT ; DOWELL, RICHARD ; Barker, Elizabeth ; GALVIN, KARYN ; DETTMAN, SHANI ; SARANT, JULIA ; RANCE, GARY ; Hollow, Rod ; BLAMEY, PETER ; Clark, Graeme M. ( 1994)
    For many children with severe and profound hearing losses, conventional hearing aids are unable to provide sufficient amplification to ensure good oral communication and/or in the case of very young children, development of speech and language. Traditionally a number of these children have opted for the use of sign language alone or in Total Communication approaches as a primary means of communication. The advent of multiple channel cochlear implants for children and the continuing development of multiple channel speech processing tactile devices provide auditory approaches to resolving communication difficulties for these children. The successful use of such devices depends on a number of factors including the information provided through the aid; the ease of use, convenience and reliability of the aid; the individual communication needs of the child; and the habilitation and management program used with the device. Long-term data has shown that children continue to show increased speech perception benefits from improvements in speech processing and from further experience with these devices. Habilitation and management programs must therefore be geared to meet the changing needs of children as they progress and of families as children mature and face new challenges. Habilitation must address specific individual needs in speech perception and in speech production. For very young children, benefits of improved speech perception should have an impact on the development of speech and language, and habilitation and management must emphasise the need for language growth.
  • Item
    Thumbnail Image
    Habilitation issues in the management of children using the cochlear multiple-channel cochlear prosthesis
    Cowan, Robert S. C. ; Barker, Elizabeth J. ; Dettman, Shani J. ; Blamey, Peter J. ; RANCE, GARY ; Sarant, Julia Z. ; Galvin, Karyn L. ; Dawson, Pam W. ; Hollow, Rod ; Dowell, Richard C. ; PYMAN, BRIAN ; Clark, Graeme M. (Wien, 1994)
    Since 1985, a significant proportion of patients seen in the Melbourne cochlear implant clinic have been children. The children represent a diverse population, with both congenital and acquired hearing-impairments, a wide-range of hearing levels pre-implant, and an age range from 2 years to 18 years. The habilitation programme developed for the overall group must be flexible enough to be tailored to the individual needs of each child, and to adapt to the changing needs of children as they progress. Long-term data shows that children are continuing to show improvements after 5-7 years of device use, particularly in their perception of open-set words and sentences. Habilitation programs must therefore be geared to the long-term needs of children and their families. Both speech perception and speech production need to be addressed in the specific content of the habilitation program for any individual child. In addition, for young children, the benefits of improved speech perception should have an impact on development of speech and language, and the focus of the programme for this age child will reflect this difference in emphasis. Specific materials and approaches will vary for very young children, school-age and teenage children. In addition, educational setting will have a bearing on the integration of listening and device use into the classroom environment.
  • Item
    Thumbnail Image
    Validation of a technique for establishing maximum comfortable levels for children using cochlear implants [Abstract]
    Hollow, R. ; Winton, L ; Hill, K. ; Dowell, R. ; Clark, Graeme M. ( 2002)
    The aim of fitting a cochlear implant is to establish electrical stimulation parameters that will provide the wearer with comfortable and useful auditory sensations. One parameter that is fundamental to achieving this aim is the Maximum Comfortable Level (C-level). A C-level is the amount of electrical current that produces a loud, but comfortable sound. C-levels need to be established for all channels that a person will use in their speech processor Map. Determining C-levels can be complicated as the person is required to make a judgment about the loudness of a sound. While most adults and older children have the ability to make such a judgment and provide feedback to the clinician, this is rarely the case for young children. Generally, the only way a clinician will be aware a sound could be too loud for a young child is when they observe the child giving an aversive reaction or an involuntary blink. A current level that produces such a reaction is called the Loudness Discomfort Level (LOL). This study examines the relationship between LDLs and C-levels. Testing was performed with a group of adults, using stimulation rates and stimulation modes that are commonly used by children. The LDL/C-level relationship established in this study provides a procedure for selling C-Levels for young children when only loudness discomfort responses can be obtained.
  • Item
    Thumbnail Image
    Factors affecting speech perception outcomes for older children using multichannel cochlear implants
    Dowell, Richard C. ; Dettman, Shani J. ; Hill, Katie ; Winton, Elizabeth ; Hollow, Rod ; Clark, Graeme M. ( 2002)
    Experience with cochlear implantation in early-deafened teenagers or young adults has been somewhat disappointing, however, in recent years a proportion of older children have demonstrated excellent speech perception performance. There appears to be a wide gap between the good and poor performers within this group. It is important to investigate the possible factors influencing performance so that adolescents and their families are able to make informed decisions regarding cochlear implant surgery. This study considered a number of factors in a group of 25 children implanted in Melbourne between the ages of 8 and 18 years. Each subject completed open set speech perception testing using BKB sentences before and after implantation and pre-operative language testing using the Peabody Picture Vocabulary Test. Data were collected regarding the type of hearing loss, age at implant, age at hearing aid fitting, audiometric details, and the pre-and postoperative communication mode. Multivariate analysis suggested that three factors have a significant predictive value for post-implant speech perception: pre-operative open-set sentence score, duration of profound hearing loss and equivalent language age. These three factors accounted for 66% of the variance in this group. The results of this study suggest that children who have useful pre-implant speech perception, and higher age-equivalent scores on language measures, would be expected to do well with a cochlear implant. A shorter duration of profound hearing loss is also advantageous. Mean speech perception scores for the older group were not significantly different from younger children.
  • Item
    Thumbnail Image
    What factors contribute to successful outcomes for children using cochlear implants
    Cowan, Robert C. ; Clark, Graeme M. ; Dowell, Richard C. ; Dettman, Shani J ; Barker, Elizabeth ; Latus, Katie ; Hollow, Rod ; Blamey, Peter J. ( 2000)
    Long term speech perception data has been collected for 100 children using the Nucleus multichannel cochlear prosthesis in Melbourne. Scores on a number of different assessments are available at approximately six month intervals following implantation for these children. The group represents an unselected sample of cochlear implant users, as all children were included if they had sufficient developmental skills to perform formal speech perception tests. Information was also collected on each child regarding type of hearing loss, age of onset of profound hearing loss, duration of profound hearing loss, age at implantation, pre and post-implant communication mode, developmental delay, speech processing strategy and length of experience with implant use.