Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 19
  • Item
    Thumbnail Image
    Meningitis after cochlear implantation: the risk is low, and preventive measures can reduce this further
    Wei, Benjamin P. C. ; Clark, Graeme M. ; O'Leary, Stephen J. ; Shepherd, Robert K. ; Robins-Browne, Roy M. ( 2007)
    Since the 1980s, more than 80 000 people have received cochlear implants worldwide. These implants are designed to enable people who are severely or profoundly deaf to experience sound and speech. Since 1990, implantation has become standard treatment for people who cannot communicate effectively despite well fitted hearing aids. Children who are deaf when they are born can perceive sound and learn to speak if they receive cochlear implants at a young age (ideally under 18 months). The use of cochlear implants has been thought to be safe. But since 2002 the number of patients with meningitis related to cochlear implantation has increased worldwide. Mortality and neurological complications after meningitis are high. We need to investigate the reasons for this and look at measures to reduce them.
  • Item
    Thumbnail Image
    Cochlear implants: climbing new mountains (The Graham Fraser memorial lecture)
    Clark, Graeme M. ( 2001)
    This 7th annual lecture was given as a special tribute to Graham Fraser (Figure 1). His enthusiasm, drive and constant search to find new ways to help deaf people, particularly with cochlear implants, has been most impressive. I remember with affection the visit Graham and his wife, Pat, made to Melbourne in 1992. There were lively discussions the past and future of cochlear implants. He would have had much to say about the new directors for the next decade. I hope to summarize some of those possibilities, and will refer in particular to research at our centres in Melbourne.
  • Item
    Thumbnail Image
    The cochlear implant: a search for answers
    Clark, Graeme M. ( 2000)
    In 1967, when I commenced cochlear implant research, there was little that could be done to help profoundly deaf people. With normal hearing, sound vibrations are converted by hair cells in the inner ear into electrical signals. These produce temporal and spatial patterns of electrical responses in the auditory pathways. With a profound hearing loss the hair cells are absent, and amplifying sound with a hearing aid provides little help.
  • Item
    Thumbnail Image
    Cochlear implants in adults and children: comment
    Clark, Graeme M. ( 1997)
    This is a well-written review of the NIH Consensus report on cochlear implants for adults and children.
  • Item
    Thumbnail Image
    Control strategies for neurons modelled by self-exciting point processes [Abstract]
    Irlicht, Laurence S. ; Clark, Graeme M. ( 1995)
    Abstract not available due to copyright.
  • Item
    Thumbnail Image
    Current trends in speech perception performance in adult cochlear implant patients [Abstract]
    Hollow, Rod ; Plant, Kerrie ; Whitford, Lesley ; Skok, Marisa ; DOWELL, RICHARD ; Clark, Graeme M. ( 1996)
    In 1994, Cochlear Pty. Ltd. (Now Cochlear Limited) released a new speech processor, the Spectra 22, for use with the Nucleus 22-channel cochlear implant. The Spectra 22 speech processor incorporates a new speech processing strategy called SPEAK, which is based upon research conducted by the University of Melbourne. This paper reports post-operative scores on open-set word and sentence materials for adult patients in the Melbourne Cochlear Implant Clinic who have been started up with the Spectra 22 speech processor.
  • Item
    Thumbnail Image
    The importance of different frequency bands to the speech perception of cochlear implantees [Abstract]
    Henry, Belinda A. ; McKay, Colette M. ; McDermott, Hugh J. ; Clark, Graeme M. ( 1996)
    It is well known that cochlear implantees exhibit a wide range of speech perception ability. Understanding the reason for this variability may lead to improved speech processors. This study investigates whether implantees rely on different areas of the speech spectrum for speech cues, compared to normally hearing listeners, and whether poor performers rely on different spectral areas than better performers. Six subjects with the Mini System 22 implant and using the SPEAK strategy participated in this experiment. Scores for monosyllabic words were obtained using the full speech spectrum and with selected frequency bands removed from the subjects’ speech processor maps. The Articulation Index (AI) is a measure of the proportion of speech information available to a listener, and the relative contribution to AI from different frequency bands is termed the Importance Function. The five frequency bands studied in this experiment were determined to be of equal importance to normally hearing listeners for the speech material used. The scores for each implantee were transformed into AI values, and hence the relative importance of the bands was determined. This relative importance was compared between the implantee group and normally hearing listeners to determine the way in which speech perception by electrical stimulation varies from that by acoustical stimulation. Comparisons were also made between individual implantees to determine whether correlations exist between their speech perception ability and their use of cues in different parts of the spectrum. Further research will determine whether the differences among implantees are correlated with their ability to perceive changes in stimulation place or temporal characteristics.
  • Item
    Thumbnail Image
    A training program for use with multichannel speech perception/production tactile devices [Abstract]
    GALVIN, KARYN ; COWAN, ROBERT ; Mavrias, Gina ; Moore, Alessandra ; SARANT, JULIA ; Clark, Graeme M. ( 1996)
    Over the past ten years, there have been remarkable improvements in both conventional hearing aid technology and in the use of multichannel cochlear prostheses. These developments have resulted in improved speech perception for severely and profoundly hearing impaired adults and children. However, a small number of adults and children remain unable to benefit from either of these prosthetic approaches. This may occur as a result of medical/surgical issues, which render implantation unfeasible, or from a decision by the patient or parents that the device is inappropriate for the individual person. In these cases, use of a supplemental speech perception device employing the intact tactile modality has been advocated. A number of single and multichannel devices have been developed, both commercially and in the laboratory. One of these, the Tickle Talker, a multichannel electrotactile speech processor, has been developed and thoroughly evaluated with both adults and children at the University of Melbourne. Benefits to speech perception have been noted on both closed-set phonemic discrimination tests, and on open-set word and sentence scores, where the device was used to supplement lipreading and/or aided residual hearing. Benefits to articulation have also been noted. Recently, improved speech processing and the design of a new electrode handset have been implemented. While these factors are important to device acceptance, the critical factor in improving speech perception and production appears to be the training program which is employed with the device. The program must be based on the information available through the device, but organised to emphasize the integration of tactually-encoded speech information into open-set understanding of words and sentences if communication is to be improved. The important elements of the program will be discussed. At present, no tactile device is able to provide sufficient information for open-set speech understanding using only the tactile input. While this may be an ultimate goal, significant periods of training may be required to achieve this outcome.
  • Item
    Thumbnail Image
    Speech perception in people with a severe hearing loss: preliminary results [Abstract]
    Flynn, Mark C. ; Dowell, Richard C. ; Clark, Graeme M. ( 1996)
    Recent improvements in multichannel cochlear implants have led to improved speech perception for people with profound hearing impairments. Given this improvement, it has been suggested that some people with severe hearing impairments would be more successful with a cochlear implant than a hearing aid. Unfortunately little research exists to support the suitability of cochlear implants for these individuals. In order to determine this, a detailed investigation of the aided performance of people with severe hearing losses is being conducted at The University of Melbourne (School of Audiology). Severe hearing loss was defined as a pure tone average of greater than 60dBHL, but no worse that 100dBSPL in the better ear. At present, 15 participants have taken part in this study and their results will be discussed. Each participant took part in a standard audiometric assessment which included an audiogram, AB words, tympanometry with acoustic reflexes and an ABR. Each participant’s hearing aids were assessed to make sure that they were optimally aided. Following the hearing aid evaluation the participants took part in a series of traditional speech perception tests which included 24 consonant recognition, 11 vowel recognition, CNC words, CUNY sentences, and the Connected Speech Test (CSTv2). Other tests of speech perception were conducted which looked at the effects of different types of background noise, amounts of reverberation, rates of speech and amount of available context. The aim of this was to better simulate “real-life” listening conditions. Consequently, a range of results for both traditional assessments of speech perception and simulated listening conditions will be presented and compared.
  • Item
    Thumbnail Image
    Speech perception for hearing aid users versus cochlear implantees [Abstract]
    Flynn, Mark C. ; Dowell, Richard C. ; Clark, Graeme M. ( 1996)
    Abstract not available due to copyright.