Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Cochlear implants for adults and children
    Clark, Graeme M. (Martin Dunitz, 2002)
    Cochlear implants which use multiple-electrode speech-processing strategies are now established clinical entity for children and adults, as a result, preoperative selection and (re)habilitation are key issues. It is hard to realize that it was only in the 1960s and 1970s when many scientists and clinicians said that successful cochlear implants were not possible in the foreseeable future. The questions that had to be addressed by a multi disciplinary research effort are discussed, and the solutions achieved from the University of Melbourne's perspective are presented. However, the main aim of this chapter is to focus on preoperative selection, and (re)habilitation, including the results obtained. These issues are discussed primarily with reference to data from the University of Melbourne's Cochlear Implant Clinic at the Royal Victorian Eye and Ear Hospital. As this is a book on audiological medicine only, an overview of surgical principles is presented. The surgical management of the patient is, of course, very important, so for more details the reader is referred elsewhere. Cochlear implantation has also been the subject of quite intense ethical debate, particularly over its use for children. For this reason, a discussion of ethical issues is included. Finally, the chapter concludes with a vision of research in the next Millennium.
  • Item
    Thumbnail Image
    Preliminary speech perception results for children with the 22-electrode Melbourne/ cochlear hearing prosthesis
    Cowan, R. S. C. ; Dowell, R. C. ; Pyman, B. C. ; Dettman, S. J. ; Dawson, P. W. ; Rance, G. ; Barker, E. J. ; Sarant, J. Z. ; Clark, Graeme M. ( 1993)
    The 22-electroce cochlear prosthesis developed by the University of Melbourne and Cochlear Pty. Ltd. has been shown to provide significant speech perception benefits to profoundly deafened adults. More recently, use of an improved Multipeak encoding strategy has significantly improved speech perception performance both in quiet and in noise. Benefits to speech perception in children have not as yet been fully documented, in part due to the shorter history of implant use in children and the smaller overall number of children implanted as compared with adults. The first implantation of the 22-electrode cochlear prosthesis in a child was carried out in Melbourne in January of 1985. In Melbourne, a 5-year-old child was operated on in April 1986, and a first congenitally deaf child in April 1987. The age of implantation has been progressively reduced, with the first 2-year-old child implanted in Melbourne in 1990. As at January 1992, approximately 1,200 children (under 18 years of age inclusive) have been implanted worldwide with the 22-electrode cochlear prosthesis. Of this number, approximately 50% are under the age of 6 years. The age of the child, aetiology of the hearing loss, age at onset and duration of the hearing loss, education program attended both prior to and subsequent to implantation, and parental motivation to assist in habilitation are all factors which may affect an individual child's development and progress with the device. Evaluation of performance in children is complicated by a number of issues, including the effects of delayed speech and language development, and the ability of individual children to perform auditory tests. The measure of performance chosen for any evaluation will also reflect the interests of the particular clinician. For example, effects of device use on speech production may be of interest to the speech therapist, whereas educational progress will be of primary importance to the teacher of an implanted child. However, in choosing an appropriate evaluation test to measure progress woth the cochlear prosthesis, it is vital to realize that all measures such as effects of device use on speech production, educational progress, development of language, and effects on social and communication skills depend on the child being able to accurately perceive speech information through her/his device.