Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 19
  • Item
    Thumbnail Image
    Meningitis after cochlear implantation: the risk is low, and preventive measures can reduce this further
    Wei, Benjamin P. C. ; Clark, Graeme M. ; O'Leary, Stephen J. ; Shepherd, Robert K. ; Robins-Browne, Roy M. ( 2007)
    Since the 1980s, more than 80 000 people have received cochlear implants worldwide. These implants are designed to enable people who are severely or profoundly deaf to experience sound and speech. Since 1990, implantation has become standard treatment for people who cannot communicate effectively despite well fitted hearing aids. Children who are deaf when they are born can perceive sound and learn to speak if they receive cochlear implants at a young age (ideally under 18 months). The use of cochlear implants has been thought to be safe. But since 2002 the number of patients with meningitis related to cochlear implantation has increased worldwide. Mortality and neurological complications after meningitis are high. We need to investigate the reasons for this and look at measures to reduce them.
  • Item
    Thumbnail Image
    Threshold shift: effects of cochlear implantation on the risk of pneumococcal meningitis
    Wei, Benjamin P. C. ; Shepherd, Robert K. ; Robins-Browne, Roy M. ; Clark, Graeme M. ; O'Leary, Stephen J. ( 2007)
    Unavailable due to copyright.
  • Item
    Thumbnail Image
    Effects of inner ear trauma on the risk of pneumococcal meningitis
    Wei, Benjamin P. C. ; Shepherd, Robert K. ; Robins-Browne, Roy M. ; Clark, Graeme M. ; O'LEARY, STEPHEN ( 2007)
    Objective: To examine the risk of pneumococcal meningitis in healthy rats that received a severe surgical trauma to the modiolus and osseous spiral lamina or the standard insertion technique for acute cochlear implantation. Design: Interventional animal studies. Subjects: Fifty-four otologically normal adult Hooded- Wistar rats. Interventions: Fifty-four rats (18 of which received a cochleostomy alone; 18, a cochleostomy and acute cochlear implantation using standard surgical techniques; and 18, a cochleostomy followed by severe inner ear trauma) were infected 4 weeks after surgery with Streptococcus pneumoniae via 3 different routes (hematogenous, middle ear, and inner ear) to represent all potential routes of bacterial infection from the upper respiratory tract to the meninges in cochlear implant recipients with meningitis. Results: Severe trauma to the osseous spiral lamina and modiolus increased the risk of pneumococcal meningitis when the bacteria were given via the middle or inner ear (Fisher exact test, P<.05). However, the risk of meningitis did not change when the bacteria were given via the hematogenous route. Acute electrode insertion did not alter the risk of subsequent pneumococcal meningitis for any route of infection. Conclusions: Severe inner ear surgical trauma to the osseous spiral lamina and modiolus can increase the risk of pneumococcal meningitis. Therefore, every effort should be made to ensure that cochlear implant design and insertion technique cause minimal trauma to the bony structures of the inner ear to reduce the risk of pneumococcalmeningitis.
  • Item
    Thumbnail Image
    Assessment of the protective effect of pneumococcal vaccination in preventing meningitis after cochlear implantation
    Wei, Benjamin P. C. ; Robins-Browne, Roy M. ; Shepherd, Robert K. ; AZZOPARDI, KRISTY ; Clark, Graeme M. ; O'Leary, Stephen J. ( 2007)
    Objectives: To examine if a 23-valent pneumococcal capsular polysaccharide vaccine (PPV23) reduces the risk of meningitis in healthy rats after cochlear implantation. Design: Interventional animal study. Interventions: Thirty-six rats (18 immunized and 18 unimmunized) received cochlear implantations and were then infected with Streptococcus pneumoniae via 3 different routes (hematogenous, middle ear, and inner ear) in numbers sufficient to induce meningitis. Results: The rats with implants that received PPV23 were protected from meningitis when the bacteria were delivered via the hematogenous and middle-ear routes (Fisher exact test P<.05). However, the protective effect of the vaccine in the rats with implants was only moderate when the bacteria were inoculated directly into the inner ear. Conclusions: Our animal model clearly demonstrates that immunization can protect healthy rats with a cochlear implant from meningitis caused by a vaccine-covered serotype. This finding supports the notion that all current and future implant recipients should be vaccinated against S pneumoniae.
  • Item
    Thumbnail Image
    Chronic electrical stimulation of the auditory nerve at high rates: I. Effect on residual hearing [Abstract]
    Xu, J. ; Shepherd, R. K. ; Clark, Graeme M. ( 1996)
    In addition to direct excitation of auditory nerve fibres, cochlear implant patients with small amounts of residual hearing may receive important additional auditory cues via electrophonic activation of hair cells 1. Before incorporating electrophonic hearing into speech processing strategies, the extent of hair cell survival following cochlear implantation must first be determined. We have recently demonstrated widespread survival of hair cells apical to electrode arrays implanted for periods of up to three years, the present report describes the effects of chronic electrical stimulation on hair cell survival.
  • Item
    Thumbnail Image
    Chronic electrical stimulation of the auditory nerve at high rates: II. Cochlear pathophysiology [Abstract]
    Shepherd, R. K. ; Xu, J. ; Clark, Graeme M. ( 1996)
    A major factor in the improved performance of cochlear implant patients has been the use of high stimulus rate speech processing strategies. While these strategies show clear clinical advantage, we know little of their long-term safety. Indeed, recent studies have indicated that high stimulus rates at intensities above clinical limits, can result in neural damage as a result of prolonged neuronal hyperactivity. The present study was designed to evaluate the effects of chronic electrical stimulation of the auditory nerve at high rates, using intensities within clinical limits.
  • Item
    Thumbnail Image
    Spatial representation of the cochlea within the inferior colliculus of neonatally deafened kittens following chronic electrical stimulation of the auditory nerve [Abstract]
    Shepherd, R. K. ; Martin, R. L. ; Brown, M. ; Clark, Graeme M. ( 1995)
    The orderly tonotopic representation of the cochlea is accurately reproduced within the central auditory system of normal hearing animals. Any degradation of this representation as a result of a neonatal hearing loss or chronic electrical stimulation during development could have important implications for the use of multichannel cochlear implants in young children. In the present study we have used 2-deoxyglucose autoradiography (2-00) to examine the topographic representation of the cochlea within the inferior colliculus (IC) of neonatally deafened kittens following periods of chronic intracochlear electrical stimulation.
  • Item
    Thumbnail Image
    Cochlear histopatholgic characteristics following long-term implantation: safety studies in the young monkey
    Burton, Martin J. ; Shepherd, Robert K. ; Clark, Graeme M. ( 1996)
    Objective: To evaluate the safety of cochlear implantation in children 2 years of age or younger using a non-human primate model.
  • Item
    Thumbnail Image
    Experimental study on extracochlear electric stimulation [Abstract]
    Ni, Daofeng ; Shepherd, Robert K. ; Clark, Graeme M. ( 1992)
    The efficiency and feasibility of chronic extracochlear implantation and electric stimulation were studied in two adult cats and four 2-month kittens. The first electrode was placed on the round window by fixing the leadwire on the bridge of aditus between the middle ear and bulla cavity; the second electrode was placed on the surface of the tympanic promontory; the third was inserted into the temporal muscle out of the bulla and the forth fixed in transverse sinus with dental cement. ABRs and EABRs were recorded pre-and postoperatively and during electric stimulation.
  • Item
    Thumbnail Image
    Surgery for an improved multiple-channel cochlear implant
    Clark, Graeme M. ; Pyman, Brian C. ; Webb, Robert L. ; Bailey, Quentin E. ; Shepherd, Robert K. ( 1984)
    An improved multiple-channel cochlear implant has been developed. The titanium container with enclosed electronics, the receiver coil and the connector are embedded in medical-grade Silastic. The upper half of the implant has a diameter of 35 mm and a height of 4.5 mm. and the lower half a diameter of 23 mm and a height of.5 mm. The electrode array has also been designed to reduce the possibility of breakage due to repeated movements over many years. The surgery involves drilling a bed in the mastoid bone for the receiver-stimulator, and fixing the proximal electrode under the mastoid cortex. Gentle insertion of the electrode array through the round window and along the seala tympani is achieved with a specially designed microclaw.