Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 9 of 9
  • Item
    Thumbnail Image
    Contributing factors to improved speech perception in children using the nucleus 22-channel cochlear prosthesis
    Cowan, Robert S. C. ; Galvin, Karyn L. ; KLIEVE, SHARON ; Barker, Elizabeth J. ; Sarant, Julia Z. ; DETTMAN, SHANI ; Hollow, Rod ; RANCE, GARY ; Dowell, Richard C. ; PYMAN, BRIAN ; Clark, Graeme M. ( 1997)
    It has been established that use of multiple-channel intracochlear implants can significantly improve speech perception for postlinguistically deafened adults. In the development of the Nucleus 22-channel cochlear implant, there have been significant developments in speech processing strategies, providing additional benefits to speech perception for users. This has recently culminated in the release of the Speak speech processing strategy, developed from research at the University of Melbourne. The Speak strategy employs 20 programmable bandpass filters which are scanned at an adaptive rate, with the largest outputs of these filters presented to up to ten stimulation channels along the electrode array. Comparative studies of the Speak processing strategy (in the Nucleus Spectra-22 speech processor), with the previously-used Multipeak (Multipeak) speech processing strategy (in the Minisystem-22 speech processor), with profoundly deaf adult cochlear implant users have shown that the Speak processing strategy provides a significant benefit to adult users both in quiet situations and particularly in the presence of background noise. Since the first implantation of the Nucleus device in a profoundly hearing-impaired child in Melbourne in 1985, there has been a rapid growth in the number of children using this device. Studies of cochlear implant benefits for children using the Nucleus 22-channel cochlear implant have also shown that children can obtain significant benefits to speech perception, speech production and language, including open-set understanding of words and sentences using the cochlear implant alone. In evaluating contributing factors to speech perception benefits available for children, four specific factors are important to investigate: (1) earlier implantation -resulting from earlier detection of deafness; (2) improved hardware and surgical techniques -allowing implantation in infants; (3) improved speech processing, and (4) improved habilitation techniques. Results reported previously have been recorded primarily for children using the Multipeak strategy implemented in the MSP speech processor. While it is important to evaluate the factors which might contribute to improvements in speech perception benefits, an important question is the effect of improved speech processing strategy, since this will determine what is perceived through the device. Given that adult patients changing to the Spectra speech processor had also shown improved perception in noisy situations, and the fact that children are in general in noisy environments in the classroom setting for a large proportion of their day, it was of obvious interest to evaluate the potential for benefit in poor signal-to-noise ratios from use of the Speak processing strategy and from specific training in the ability to perceive in background noise. The study was aimed at evaluating whether children who were experienced in use of the Multipeak speech processing strategy would be able to changeover to the new Speak processing strategy, which provides a subjectively different output. Secondly, the study aimed to evaluate the benefits which might accrue to children from use of controlled habilitation in background noise.
  • Item
    Thumbnail Image
    The importance of different frequency bands to the speech perception of cochlear implantees [Abstract]
    Henry, Belinda A. ; McKay, Colette M. ; McDermott, Hugh J. ; Clark, Graeme M. ( 1996)
    It is well known that cochlear implantees exhibit a wide range of speech perception ability. Understanding the reason for this variability may lead to improved speech processors. This study investigates whether implantees rely on different areas of the speech spectrum for speech cues, compared to normally hearing listeners, and whether poor performers rely on different spectral areas than better performers. Six subjects with the Mini System 22 implant and using the SPEAK strategy participated in this experiment. Scores for monosyllabic words were obtained using the full speech spectrum and with selected frequency bands removed from the subjects’ speech processor maps. The Articulation Index (AI) is a measure of the proportion of speech information available to a listener, and the relative contribution to AI from different frequency bands is termed the Importance Function. The five frequency bands studied in this experiment were determined to be of equal importance to normally hearing listeners for the speech material used. The scores for each implantee were transformed into AI values, and hence the relative importance of the bands was determined. This relative importance was compared between the implantee group and normally hearing listeners to determine the way in which speech perception by electrical stimulation varies from that by acoustical stimulation. Comparisons were also made between individual implantees to determine whether correlations exist between their speech perception ability and their use of cues in different parts of the spectrum. Further research will determine whether the differences among implantees are correlated with their ability to perceive changes in stimulation place or temporal characteristics.
  • Item
    Thumbnail Image
    Potential and limitations of cochlear implants in children
    Dowell, R. C. ; Blamey, P. J. ; Clark, Graeme M. ( 1995)
    Multiple-channel cochlear implants have been in use with children and adolescents for 8 years. The speech perception, speech production, and language of many of these children has been investigated in some detail.l-4 There have been many predictions about factors that may affect the performance of children with implants. For instance, it has been suggested that children with a congenital loss of hearing would not have the same potential to benefit from a cochlear implant as those with an acquired loss. Similarly, it has been suggested that younger children are likely to gain more benefit from a cochlear implant because of the effect of various critical ages for language learning.5 As more results have become available, it has been our observation that the performance of any particular child with a cochlear implant does not appear to follow well-defined rules, and that generalizations about the potential of certain groups of children are likely to encounter many exceptions. We now have a large quantity of results for children using cochlear implants, and it may be possible to determine some of the factors that have a significant effect on performance. This paper will attempt to identify some of these factors by reviewing speech perception results for 100 children implanted with the Nucleus 22-channel cochlear prosthesis in Australia and speech perception results for adult patients. This analysis will use an "information processing" model of a child using a cochlear implant. That is, we will assume that a child will benefit from a cochlear implant in terms of speech perception, production, and language development, if he or she receives a maximal amount of auditory information from the environment, and is able to process this information successfully. This model divides potential limiting or predictive factors into those that affect the information presented to the auditory system (eg, implant technology, surviving auditory neurons) and those that affect the processing of this information (eg, development of central auditory pathways, amount and consistency of auditory input).
  • Item
    Thumbnail Image
    Speech perception for adults using cochlear implants
    Dowell, Richard C. (Whurr, 1994)
    A mere 16 years ago, the title of this chapter would have created considerable consternation in audiological circles. A high proportion of otologists and audiologists would have wondered, with good reason, about the potential content of such a chapter. In 1977, there were certainly cochlear implants in use with reported benefits, but reliable documentation of any useful speech perception under controlled conditions was difficult to find. The rapid development of cochlear prostheses since that time has led to thousands of profoundly hearing-impaired adults obtaining benefits for speech perception, and there is now no doubt regarding the efficacy of such devices. This chapter will provide a brief overview of this rapid improvement in the speech perception of adult cochlear implant users, consider some of the reasons for this improvement, and discuss some of the factors that may influence speech perception performance for the individual user. (From Introduction)
  • Item
    Thumbnail Image
    Comparison of current speech coding strategies
    Whitford, L. A. ; Seligman, P. M. ; Blamey, Peter J. ; McDermott, H. J. ; Patrick, J. F. ( 1993)
    This paper reports on two studies carried out at the University of Melbourne jointly with Cochlear Pty Ltd. The studies demonstrated substantial speech perception improvements over the current Multipeak strategy in background noise.
  • Item
    Thumbnail Image
    Electrode position, repetition rate, and speech perception by early-and-late-deafened cochlear implant patients
    Busby, P. A. ; Tong, Y. C. ; Clark, Graeme M. ( 1993)
    Psychophysical and speech perception studies were conducted on eight patients using the 22electrode cochlear implant manufactured by Cochlear Pty. Ltd. Four early-deafened patients became deafened at 1-3 years of age and were implanted at 5-14 years of age. Four late-deafened (postlingual adult) patients became deafened at 38-47 years of age and were implanted at 42-68 years of age. Psychophysical studies measured the discrimination of trajectories with time-varying electrode positions and repetition rates. Speech perception studies measured performance using two speech coding strategies: a multi-electrode strategy which coded the first and second formant frequencies, the amplitudes of the two formants, and the fundamental frequency; and a single-electrode strategy which coded the amplitudes of the first and second formants, and the fundamental frequency. In general, the four late-deafened patients and one early-deafened patient were more successful than the other three early-deafened patients in the discrimination of electrode position trajectories and in speech perception using the multi-electrode strategy. Three of the four late-deafened patients were more successful than the early-deafened patients in the discrimination of repetition rate trajectories. Speech perception performance in the single-electrode strategy was closely related to performance in repetition rate discrimination. The improvement in speech perception performance from the single-electrode to multi-electrode strategy was consistent with successful performance in electrode discrimination.
  • Item
    Thumbnail Image
    Results for two children using a multiple-electrode intracochlear implant
    Busby, P. A. ; Tong, Yit C. ; Roberts, S. A. ; Altidis, P. M. ; Dettman, S. J. ; Blamey, Peter J. ; Clark, Graeme M. ; Watson, R. K. ; Rickards, Field W. ( 1989)
    Abstract not available due to copyright.
  • Item
    Thumbnail Image
    Rehabilitation strategies for adult cochlear implant users
    Dowell, R. C. ; Blamey, P. J. ; Clark, Graeme M. (Monduzzi Editore, 1997)
    This paper summarizes open-set speech perception results using audition alone for a large group of adult Nucleus cochlear implant users in Melbourne. The results show wide variation in performance but significant improvement over the years from 1982 to 1995. Analysis of these results shows that speech processor developments have made the major contribution to this improvement over this time. Recent results for patients using the SPECTRA-SPEAK processor show !hat most subjects obtain good speech perception within six months of implantation and the need for intensive auditory training is minimal for many of these patients. Postoperative care should encourage consistent device use by providing opportunities for success and providing long term technical support for implant users. In some cases, including elderly patients, those with long term profound deafness, and those with special needs, there will still be a need for additional rehabilitation and auditory training support.
  • Item
    Thumbnail Image
    Factors affecting outcomes in children with cochlear implants
    Dowell, R. C. ; Blamey, P. J. ; Clark, Graeme M. (Monduzzi Editore, 1997)
    Open-set speech perception tests were completed for a group of 52 children and adolescents who were long-term users of the Nucleus multiple channel cochlear prosthesis. Results showed mean scores for the group of 32.4% for open-set BKE sentences and 48.1% for phonemes in open-set monosyllabic words. Over 80% of the group performed significantly on these tas1cs. Age at implantation was identified as a significant factor affecting speech perception performance with improved scores for children implanted early. This factor was evident in the results at least down to the age of three years. Duration.. of profound hearing loss, progressive hearing loss, educational program and preoperative residual hearing were also identified as significant factors that may affect speech perception performance.