Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 59
  • Item
    Thumbnail Image
    Electrical network properties and distribution of potentials in the cat cochlea [Abstract]
    Black, R. C. ; Clark, Graeme M. (Australian Physiological and Pharmacological Society, 1978)
    The-patterns of electrical resistance and capacitance in the cochlea formed by the anatomical organisation of the tissue structures and fluids are important in determining the distribution of electrical potentials which arise during normal acoustic stimulation (von Bekesy,1951). Cochlear potential distributions have in the past been measured by recording from the scalar fluids both the spread of cochlear microphonics and also potentials due to electrical stimulation. However, similar distributions in the hair cell-nerve ending region of the organ of Corti may not necessarily occur because of current shunting effects due to the electrical network patterns. To examine these current shunting effects, a three dimensional mathematical model of the electrical properties of the cat cochlea was constructed. This was formed from a two dimensional cochlear cross-section model similar to that proposed by Johnstone et al., (1966) for the guinea pig. Sixteen such sections were resistively coupled to form the three dimensional model. Results derived from this model predict that during electrical stimulation of the cochlea, the current in the organ of Corti region attenuates quite differently to the scalar voltage by a degree which depends on the stimulus electrode configuration.
  • Item
    Thumbnail Image
    Chronic electrical stimulation of the auditory nerve at high rates: I. Effect on residual hearing [Abstract]
    Xu, J. ; Shepherd, R. K. ; Clark, Graeme M. ( 1996)
    In addition to direct excitation of auditory nerve fibres, cochlear implant patients with small amounts of residual hearing may receive important additional auditory cues via electrophonic activation of hair cells 1. Before incorporating electrophonic hearing into speech processing strategies, the extent of hair cell survival following cochlear implantation must first be determined. We have recently demonstrated widespread survival of hair cells apical to electrode arrays implanted for periods of up to three years, the present report describes the effects of chronic electrical stimulation on hair cell survival.
  • Item
    Thumbnail Image
    Chronic electrical stimulation of the auditory nerve at high rates: II. Cochlear pathophysiology [Abstract]
    Shepherd, R. K. ; Xu, J. ; Clark, Graeme M. ( 1996)
    A major factor in the improved performance of cochlear implant patients has been the use of high stimulus rate speech processing strategies. While these strategies show clear clinical advantage, we know little of their long-term safety. Indeed, recent studies have indicated that high stimulus rates at intensities above clinical limits, can result in neural damage as a result of prolonged neuronal hyperactivity. The present study was designed to evaluate the effects of chronic electrical stimulation of the auditory nerve at high rates, using intensities within clinical limits.
  • Item
    Thumbnail Image
    Spatial representation of the cochlea within the inferior colliculus of neonatally deafened kittens following chronic electrical stimulation of the auditory nerve [Abstract]
    Shepherd, R. K. ; Martin, R. L. ; Brown, M. ; Clark, Graeme M. ( 1995)
    The orderly tonotopic representation of the cochlea is accurately reproduced within the central auditory system of normal hearing animals. Any degradation of this representation as a result of a neonatal hearing loss or chronic electrical stimulation during development could have important implications for the use of multichannel cochlear implants in young children. In the present study we have used 2-deoxyglucose autoradiography (2-00) to examine the topographic representation of the cochlea within the inferior colliculus (IC) of neonatally deafened kittens following periods of chronic intracochlear electrical stimulation.
  • Item
    Thumbnail Image
    Auditory evoked potentials and auditory sequential memory [Abstract]
    Clark, Graeme M. ; Knight, Lyall J. ; Stanley, Gordon V. ( 1974)
    The evaluation of intelligence in infants and young children is important in assessing their prognosis and institutional placement, and is difficult with present clinical methods. Therefore, the recent studies which show a correlation between visual evoked responses and intelligence are of value. It is also of importance to determine if auditory evoked potentials may be used in assessing children with communication disorders, as their defect frequently involves the auditory system, and they will often require evoked response audiometry to exclude loss of hearing from the diagnosis.
  • Item
    Thumbnail Image
    Auditory evoked responses to frequency and amplitude modulated sound
    Rickards, Field W. ; Clark, Graeme M. ( 1973)
    Auditory evoked responses to pure tone bursts have been described in a number of studies and have been characterized by the P1, N1 and P2 components. The presence of later components, namely N2, P3 and the Contingent Negative Variation, depends largely on the cerebral processing of the stimulus. These evoked responses have been recorded using tone bursts. However, neurophysiological studies have shown that the cortex codes complex sounds. Therefore, we performed a set of acute experiments on the cat, using frequency and amplitude modulated sounds. This was reported in a previous study (Richards and Clark, 1972) which showed that similar onset and later waves could be recorded from the cortex of the cat. In some areas of the cortex the later waves were in synchrony with the modulation envelope.
  • Item
    Thumbnail Image
    The design of an ear bar system for auditory neruophysiological research
    Tong, Y. C. ; Pengilley, C. J. ; Clark, Graeme M. ( 1972)
    Absolute sound intensity measurements at the ear drum are important in auditory research. Previous attempts to measure sound intensity using a small bore probe tube coupled to a microphone have proved unsatisfactory. In the present investigation an alternative system employing two condenser microphones coupled to the input end of the ear bar was used to estimate the sound intensity at the ear drum. Consideration was also given to minimizing harmonic distortion and resonance in the system.
  • Item
    Thumbnail Image
    Improved sound processing for cochlear implants
    James, C.J. ; Just, Y. ; Knight, M.R. ; Martin, L.F.A. ; McKay, C.M. ; Plant, K.L. ; Tari, S. ; Vandali, A.E. ; Clark, Graeme M. ; Cowan, R.S.C. ; McDermott, H. J. ; Blamey, P. J. ; Dawson, P. ; Fearn, R. A. ; Grayden, D. B. ; Henshall, K. R. ( 2002)
    Four signal processing schemes currently under development aim to improve the perception of sounds/ especially speech, for children and adults using the Nucleus cochlear implant system. The schemes are (1) fast-acting input-signal compression, (2) Adaptive Dynamic Range Optimisation (ADRO), (3) TESM, a scheme that emphasises transients in signals, and (4) DRSP, a strategy that applies different stimulation rates to selected sets of electrodes.
  • Item
    Thumbnail Image
    Brainstem encoding of short voice onset times in natural speech
    Clarey, J. C. ; Paolini, A. G. ; Clark, Graeme M. ( 2001)
    An auditory nerve study has shown that short voice onset times (VOTs) in synthetic consonant-vowel syllables are not accurately encoded by the fibres' discharge rate. We have re-examined this issue within the ventral Cochlear nucleus (VCN), using natural speech and a fine-grain analysis of single unit responses. We recorded extracellularly from 93 VCN neurons in rats anaesthetised with urethane (2.5 g/kg ip). After identifying a cell's response type and best frequency (BF), 3 syllables spoken by a male were presented at double rate and 3 intensities (/bεt/, /dεt/, and /gεt/, at 45, 65, and 75 dB SPL). These three syllables differ in their VOTs (the interval between consonant release and the onset of glottal pulses associated with voicing) due to the different points of articulation of the three initial stop consonants. In many neurons (particularly onset cells), these syllables evoked a clear response to consonant release, followed by an interval of inactivity or reduced activity before the periodic response to the vowel's voicing frequency commenced. This interval of reduced or no activity corresponded to a given syllable's VOT. The responses of all cells (BFs: 0.9-19 kHz) to the 9 different syllable-SPL combinations were plotted as Grand Average post-stimulus time histograms. In 8/9 combinations, syllable onset was associated with a statistically significant peak in activity and the next significant peak in discharge rate occurred at the time of voice onset (± I ms). These results indicate that the prominent responses to consonant release and voice onset, produced by the synchronous firing of neurons with a wide range of BFs, accurately encode short VOTs.
  • Item
    Thumbnail Image
    How much residual hearing is too much?
    Cowan, R. S. C. ; Dowell, R. C. ; Psarros, C. ; Dettman, S. J. ; Rance, G. ; Clark, Graeme M. ( 2000)
    The value of cochlear implants as an established clinical option for profoundly hearing-impaired adults and children has been supported by significant research results over a number of years (U.S. National Institutes of Health Consensus Statement 1995). As a direct consequence of the level of benefits shown for cochlear implant users on measures of speech perception, research has focused on investigating whether severely hearing impaired adults and children would be suitable candidates for cochlear implantation. I n considering the candidature of any individual, both medical and audiological suitability are investigated. The primary concern is to establish to what degree the patient would benefit from use of the cochlear implant.