Minerva Elements Records

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 49
  • Item
    No Preview Available
    Does genetic predisposition modify the effect of lifestyle-related factors on DNA methylation?
    Yu, C ; Hodge, AM ; Wong, EM ; Joo, JE ; Makalic, E ; Schmidt, DF ; Buchanan, DD ; Severi, G ; Hopper, JL ; English, DR ; Giles, GG ; Milne, RL ; Southey, MC ; Dugue, P-A (TAYLOR & FRANCIS INC, 2022-12-02)
    Lifestyle-related phenotypes have been shown to be heritable and associated with DNA methylation. We aimed to investigate whether genetic predisposition to tobacco smoking, alcohol consumption, and higher body mass index (BMI) moderates the effect of these phenotypes on blood DNA methylation. We calculated polygenic scores (PGS) to quantify genetic predisposition to these phenotypes using training (N = 7,431) and validation (N = 4,307) samples. Using paired genetic-methylation data (N = 4,307), gene-environment interactions (i.e., PGS × lifestyle) were assessed using linear mixed-effects models with outcomes: 1) methylation at sites found to be strongly associated with smoking (1,061 CpGs), alcohol consumption (459 CpGs), and BMI (85 CpGs) and 2) two epigenetic ageing measures, PhenoAge and GrimAge. In the validation sample, PGS explained ~1.4% (P = 1 × 10-14), ~0.6% (P = 2 × 10-7), and ~8.7% (P = 7 × 10-87) of variance in smoking initiation, alcohol consumption, and BMI, respectively. Nominally significant interaction effects (P < 0.05) were found at 61, 14, and 7 CpGs for smoking, alcohol consumption, and BMI, respectively. There was strong evidence that all lifestyle-related phenotypes were positively associated with PhenoAge and GrimAge, except for alcohol consumption with PhenoAge. There was weak evidence that the association of smoking with GrimAge was attenuated in participants genetically predisposed to smoking (interaction term: -0.022, standard error [SE] = 0.012, P = 0.058) and that the association of alcohol consumption with PhenoAge was attenuated in those genetically predisposed to drink alcohol (interaction term: -0.030, SE = 0.015, P = 0.041). In conclusion, genetic susceptibility to unhealthy lifestyles did not strongly modify the association between observed lifestyle behaviour and blood DNA methylation. Potential associations were observed for epigenetic ageing measures, which should be replicated in additional studies.
  • Item
    No Preview Available
    Methylation scores for smoking, alcohol consumption and body mass index and risk of seven types of cancer
    Dugue, P-A ; Yu, C ; Hodge, AMM ; Wong, EM ; Joo, JEE ; Jung, C-H ; Schmidt, D ; Makalic, E ; Buchanan, DDD ; Severi, G ; English, DRR ; Hopper, JLL ; Milne, RLL ; Giles, GGG ; Southey, MCC (WILEY, 2023-08-01)
    Methylation marks of exposure to health risk factors may be useful markers of cancer risk as they might better capture current and past exposures than questionnaires, and reflect different individual responses to exposure. We used data from seven case-control studies nested within the Melbourne Collaborative Cohort Study of blood DNA methylation and risk of colorectal, gastric, kidney, lung, prostate and urothelial cancer, and B-cell lymphoma (N cases = 3123). Methylation scores (MS) for smoking, body mass index (BMI), and alcohol consumption were calculated based on published data as weighted averages of methylation values. Rate ratios (RR) and 95% confidence intervals for association with cancer risk were estimated using conditional logistic regression and expressed per SD increase of the MS, with and without adjustment for health-related confounders. The contribution of MS to discriminate cases from controls was evaluated using the area under the curve (AUC). After confounder adjustment, we observed: large associations (RR = 1.5-1.7) with lung cancer risk for smoking MS; moderate associations (RR = 1.2-1.3) with urothelial cancer risk for smoking MS and with mature B-cell neoplasm risk for BMI and alcohol MS; moderate to small associations (RR = 1.1-1.2) for BMI and alcohol MS with several cancer types and cancer overall. Generally small AUC increases were observed after inclusion of several MS in the same model (colorectal, gastric, kidney, urothelial cancers: +3%; lung cancer: +7%; B-cell neoplasms: +8%). Methylation scores for smoking, BMI and alcohol consumption show independent associations with cancer risk, and may provide some improvements in risk prediction.
  • Item
    Thumbnail Image
    DNA methylation-based biological aging and cancer risk and survival: Pooled analysis of seven prospective studies
    Dugue, P-A ; Bassett, JK ; Joo, JE ; Jung, C-H ; Wong, EM ; Moreno-Betancur, M ; Schmidt, D ; Makalic, E ; Li, S ; Severi, G ; Hodge, AM ; Buchanan, DD ; English, DR ; Hopper, JL ; Southey, MC ; Giles, GG ; Milne, RL (WILEY, 2018-04-15)
    The association between aging and cancer is complex. Recent studies have developed measures of biological aging based on DNA methylation and called them "age acceleration." We aimed to assess the associations of age acceleration with risk of and survival from seven common cancers. Seven case-control studies of DNA methylation and colorectal, gastric, kidney, lung, prostate and urothelial cancer and B-cell lymphoma nested in the Melbourne Collaborative Cohort Study were conducted. Cancer cases, vital status and cause of death were ascertained through linkage with cancer and death registries. Conditional logistic regression and Cox models were used to estimate odds ratios (OR) and hazard ratios (HR) and 95% confidence intervals (CI) for associations of five age acceleration measures derived from the Human Methylation 450 K Beadchip assay with cancer risk (N = 3,216 cases) and survival (N = 1,726 deaths), respectively. Epigenetic aging was associated with increased cancer risk, ranging from 4% to 9% per five-year age acceleration for the 5 measures considered. Heterogeneity by study was observed, with stronger associations for risk of kidney cancer and B-cell lymphoma. An associated increased risk of death following cancer diagnosis ranged from 2% to 6% per five-year age acceleration, with no evidence of heterogeneity by cancer site. Cancer risk and mortality were increased by 15-30% for the fourth versus first quartile of age acceleration. DNA methylation-based measures of biological aging are associated with increased cancer risk and shorter cancer survival, independently of major health risk factors.
  • Item
    Thumbnail Image
    Genome-Wide Measures of Peripheral Blood Dna Methylation and Prostate Cancer Risk in a Prospective Nested Case-Control Study
    FitzGerald, LM ; Naeem, H ; Makalic, E ; Schmidt, DF ; Dowty, JG ; Joo, JE ; Jung, C-H ; Bassett, JK ; Dugue, P-A ; Chung, J ; Lonie, A ; Milne, RL ; Wong, EM ; Hopper, JL ; English, DR ; Severi, G ; Baglietto, L ; Pedersen, J ; Giles, GG ; Southey, MC (WILEY, 2017-04-01)
  • Item
    Thumbnail Image
    Genome-wide association study of peripheral blood DNA methylation and conventional mammographic density measures
    Li, S ; Dugue, P-A ; Baglietto, L ; Severi, G ; Wong, EM ; Nguyen, TL ; Stone, J ; English, DR ; Southey, MC ; Giles, GG ; Hopper, JL ; Milne, RL (WILEY, 2019-10-01)
    Age- and body mass index (BMI)-adjusted mammographic density is one of the strongest breast cancer risk factors. DNA methylation is a molecular mechanism that could underlie inter-individual variation in mammographic density. We aimed to investigate the association between breast cancer risk-predicting mammographic density measures and blood DNA methylation. For 436 women from the Australian Mammographic Density Twins and Sisters Study and 591 women from the Melbourne Collaborative Cohort Study, mammographic density (dense area, nondense area and percentage dense area) defined by the conventional brightness threshold was measured using the CUMULUS software, and peripheral blood DNA methylation was measured using the HumanMethylation450 (HM450) BeadChip assay. Associations between DNA methylation at >400,000 sites and mammographic density measures adjusted for age and BMI were assessed within each cohort and pooled using fixed-effect meta-analysis. Associations with methylation at genetic loci known to be associated with mammographic density were also examined. We found no genome-wide significant (p < 10-7 ) association for any mammographic density measure from the meta-analysis, or from the cohort-specific analyses. None of the 299 methylation sites located at genetic loci associated with mammographic density was associated with any mammographic density measure after adjusting for multiple testing (all p > 0.05/299 = 1.7 × 10-4 ). In summary, our study did not find evidence for associations between blood DNA methylation, as measured by the HM450 assay, and conventional mammographic density measures that predict breast cancer risk.
  • Item
    Thumbnail Image
    Heritable methylation marks associated with breast and prostate cancer risk
    Dugue, P-A ; Dowty, JG ; Joo, JE ; Wong, EM ; Makalic, E ; Schmidt, DF ; English, DR ; Hopper, JL ; Pedersen, J ; Severi, G ; MacInnis, RJ ; Milne, RL ; Giles, GG ; Southey, MC (WILEY, 2018-09-15)
    BACKGROUND: DNA methylation can mimic the effects of germline mutations in cancer predisposition genes. Recently, we identified twenty-four heritable methylation marks associated with breast cancer risk. As breast and prostate cancer share genetic risk factors, including rare, high-risk mutations (eg, in BRCA2), we hypothesized that some of these heritable methylation marks might also be associated with the risk of prostate cancer. METHODS: We studied 869 incident prostate cancers (430 aggressive and 439 non-aggressive) and 869 matched controls nested within a prospective cohort study. DNA methylation was measured in pre-diagnostic blood samples using the Illumina Infinium HM450K BeadChip. Conditional logistic regression models, adjusted for prostate cancer risk factors and blood cell composition, were used to estimate odds ratios and 95% confidence intervals for the association between the 24 methylation marks and the risk of prostate cancer. RESULTS: Five methylation marks within the VTRNA2-1 promoter region (cg06536614, cg00124993, cg26328633, cg25340688, and cg26896946), and one in the body of CLGN (cg22901919) were associated with the risk of prostate cancer. In stratified analyses, the five VTRNA2-1 marks were associated with the risk of aggressive prostate cancer. CONCLUSIONS: This work highlights a potentially important new area of investigation for prostate cancer susceptibility and adds to our knowledge about shared risk factors for breast and prostate cancer.
  • Item
    Thumbnail Image
    Epigenetic Drift Association with Cancer Risk and Survival, and Modification by Sex
    Yu, C ; Wong, EM ; Joo, JE ; Hodge, AM ; Makalic, E ; Schmidt, D ; Buchanan, DD ; Severi, G ; Hopper, JL ; English, DR ; Giles, GG ; Southey, MC ; Dugue, P-A (MDPI, 2021-04)
    To investigate age- and sex-specific DNA methylation alterations related to cancer risk and survival, we used matched case-control studies of colorectal (n = 835), gastric (n = 170), kidney (n = 143), lung (n = 332), prostate (n = 869) and urothelial (n = 428) cancers, and mature B-cell lymphoma (n = 438). Linear mixed-effects models were conducted to identify age-, sex- and age-by-sex-associated methylation markers using a discovery (controls)-replication (cases) strategy. Replication was further examined using summary statistics from Generation Scotland (GS). Associations between replicated markers and risk of and survival from cancer were assessed using conditional logistic regression and Cox models (hazard ratios (HR)), respectively. We found 32,659, 23,141 and 48 CpGs with replicated associations for age, sex and age-by-sex, respectively. The replication rates for these CpGs using GS summary data were 94%, 86% and 91%, respectively. Significant associations for cancer risk and survival were identified at some individual age-related CpGs. Opposite to previous findings using epigenetic clocks, there was a strong negative trend in the association between epigenetic drift and risk of colorectal cancer. Methylation at two CpGs overlapping TMEM49 and ARX genes was associated with survival of overall (HR = 0.91, p = 7.7 × 10-4) and colorectal (HR = 1.52, p = 1.8 × 10-4) cancer, respectively, with significant age-by-sex interaction. Our results may provide markers for cancer early detection and prognosis prediction.
  • Item
    Thumbnail Image
    Lifetime alcohol intake, drinking patterns over time and risk of stomach cancer: A pooled analysis of data from two prospective cohort studies
    Jayasekara, H ; MacInnis, RJ ; Lujan-Barroso, L ; Mayen-Chacon, A-L ; Cross, AJ ; Wallner, B ; Palli, D ; Ricceri, F ; Pala, V ; Panico, S ; Tumino, R ; Kuehn, T ; Kaaks, R ; Tsilidis, K ; Sanchez, M-J ; Amiano, P ; Ardanaz, E ; Chirlaque Lopez, MD ; Merino, S ; Rothwell, JA ; Boutron-Ruault, M-C ; Severi, G ; Sternby, H ; Sonestedt, E ; Bueno-de-Mesquita, B ; Boeing, H ; Travis, R ; Sandanger, TM ; Trichopoulou, A ; Karakatsani, A ; Peppa, E ; Tjonneland, A ; Yang, Y ; Hodge, AM ; Mitchell, H ; Haydon, A ; Room, R ; Hopper, JL ; Weiderpass, E ; Gunter, MJ ; Riboli, E ; Giles, GG ; Milne, RL ; Agudo, A ; English, DR ; Ferrari, P (WILEY, 2021-06-01)
    Alcohol consumption is causally linked to several cancers but the evidence for stomach cancer is inconclusive. In our study, the association between long-term alcohol intake and risk of stomach cancer and its subtypes was evaluated. We performed a pooled analysis of data collected at baseline from 491 714 participants in the European Prospective Investigation into Cancer and Nutrition and the Melbourne Collaborative Cohort Study. Hazard ratios (HRs) and 95% confidence intervals (CIs) were estimated for incident stomach cancer in relation to lifetime alcohol intake and group-based life course intake trajectories, adjusted for potential confounders including Helicobacter pylori infection. In all, 1225 incident stomach cancers (78% noncardia) were diagnosed over 7 094 637 person-years; 984 in 382 957 study participants with lifetime alcohol intake data (5 455 507 person-years). Although lifetime alcohol intake was not associated with overall stomach cancer risk, we observed a weak positive association with noncardia cancer (HR = 1.03, 95% CI: 1.00-1.06 per 10 g/d increment), with a HR of 1.50 (95% CI: 1.08-2.09) for ≥60 g/d compared to 0.1 to 4.9 g/d. A weak inverse association with cardia cancer (HR = 0.93, 95% CI: 0.87-1.00) was also observed. HRs of 1.48 (95% CI: 1.10-1.99) for noncardia and 0.51 (95% CI: 0.26-1.03) for cardia cancer were observed for a life course trajectory characterized by heavy decreasing intake compared to light stable intake (Phomogeneity = .02). These associations did not differ appreciably by smoking or H pylori infection status. Limiting alcohol use during lifetime, particularly avoiding heavy use during early adulthood, might help prevent noncardia stomach cancer. Heterogeneous associations observed for cardia and noncardia cancers may indicate etiologic differences.
  • Item
    Thumbnail Image
    HOXB13 is a susceptibility gene for prostate cancer: results from the International Consortium for Prostate Cancer Genetics (ICPCG)
    Xu, J ; Lange, EM ; Lu, L ; Zheng, SL ; Wang, Z ; Thibodeau, SN ; Cannon-Albright, LA ; Teerlink, CC ; Camp, NJ ; Johnson, AM ; Zuhlke, KA ; Stanford, JL ; Ostrander, EA ; Wiley, KE ; Isaacs, SD ; Walsh, PC ; Maier, C ; Luedeke, M ; Vogel, W ; Schleutker, J ; Wahlfors, T ; Tammela, T ; Schaid, D ; McDonnell, SK ; DeRycke, MS ; Cancel-Tassin, G ; Cussenot, O ; Wiklund, F ; Gronberg, H ; Eeles, R ; Easton, D ; Kote-Jarai, Z ; Whittemore, AS ; Hsieh, C-L ; Giles, GG ; Hopper, JL ; Severi, G ; Catalona, WJ ; Mandal, D ; Ledet, E ; Foulkes, WD ; Hamel, N ; Mahle, L ; Moller, P ; Powell, I ; Bailey-Wilson, JE ; Carpten, JD ; Seminara, D ; Cooney, KA ; Isaacs, WB (SPRINGER, 2013-01)
    Prostate cancer has a strong familial component but uncovering the molecular basis for inherited susceptibility for this disease has been challenging. Recently, a rare, recurrent mutation (G84E) in HOXB13 was reported to be associated with prostate cancer risk. Confirmation and characterization of this finding is necessary to potentially translate this information to the clinic. To examine this finding in a large international sample of prostate cancer families, we genotyped this mutation and 14 other SNPs in or flanking HOXB13 in 2,443 prostate cancer families recruited by the International Consortium for Prostate Cancer Genetics (ICPCG). At least one mutation carrier was found in 112 prostate cancer families (4.6 %), all of European descent. Within carrier families, the G84E mutation was more common in men with a diagnosis of prostate cancer (194 of 382, 51 %) than those without (42 of 137, 30 %), P = 9.9 × 10(-8) [odds ratio 4.42 (95 % confidence interval 2.56-7.64)]. A family-based association test found G84E to be significantly over-transmitted from parents to affected offspring (P = 6.5 × 10(-6)). Analysis of markers flanking the G84E mutation indicates that it resides in the same haplotype in 95 % of carriers, consistent with a founder effect. Clinical characteristics of cancers in mutation carriers included features of high-risk disease. These findings demonstrate that the HOXB13 G84E mutation is present in ~5 % of prostate cancer families, predominantly of European descent, and confirm its association with prostate cancer risk. While future studies are needed to more fully define the clinical utility of this observation, this allele and others like it could form the basis for early, targeted screening of men at elevated risk for this common, clinically heterogeneous cancer.
  • Item
    Thumbnail Image
    Identification of a novel prostate cancer susceptibility variant in the KLK3 gene transcript
    Kote-Jarai, Z ; Al Olama, AA ; Leongamornlert, D ; Tymrakiewicz, M ; Saunders, E ; Guy, M ; Giles, GG ; Severi, G ; Southey, M ; Hopper, JL ; Sit, KC ; Harris, JM ; Batra, J ; Spurdle, AB ; Clements, JA ; Hamdy, F ; Neal, D ; Donovan, J ; Muir, K ; Pharoah, PDP ; Chanock, SJ ; Brown, N ; Benlloch, S ; Castro, E ; Mahmud, N ; O'Brien, L ; Hall, A ; Sawyer, E ; Wilkinson, R ; Easton, DF ; Eeles, RA (SPRINGER, 2011-06)
    Genome-wide association studies (GWAS) have identified more than 30 prostate cancer (PrCa) susceptibility loci. One of these (rs2735839) is located close to a plausible candidate susceptibility gene, KLK3, which encodes prostate-specific antigen (PSA). PSA is widely used as a biomarker for PrCa detection and disease monitoring. To refine the association between PrCa and variants in this region, we used genotyping data from a two-stage GWAS using samples from the UK and Australia, and the Cancer Genetic Markers of Susceptibility (CGEMS) study. Genotypes were imputed for 197 and 312 single nucleotide polymorphisms (SNPs) from HapMap2 and the 1000 Genome Project, respectively. The most significant association with PrCa was with a previously unidentified SNP, rs17632542 (combined P = 3.9 × 10(-22)). This association was confirmed by direct genotyping in three stages of the UK/Australian GWAS, involving 10,405 cases and 10,681 controls (combined P = 1.9 × 10(-34)). rs17632542 is also shown to be associated with PSA levels and it is a non-synonymous coding SNP (Ile179Thr) in KLK3. Using molecular dynamic simulation, we showed evidence that this variant has the potential to introduce alterations in the protein or affect RNA splicing. We propose that rs17632542 may directly influence PrCa risk.