Engineering and Information Technology Collected Works - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    An Uncertainty-Accuracy-Based Score Function for Wrapper Methods in Feature Selection
    Maadi, M ; Khorshidi, HA ; Aickelin, U (IEEE, 2023-08-13)
    Feature Selection (FS) is an effective preprocessing method to deal with the curse of dimensionality in machine learning. Redundant features in datasets decrease the classification performance and increase the computational complexity. Wrapper methods are an important category of FS methods that evaluate various feature subsets and select the best one using performance measures related to a classifier. In these methods, the accuracy of classifiers is the most common performance measure for FS. Although the performance of classifiers depends on their uncertainty, this important criterion is neglected in these methods. In this paper, we present a new performance measure called Uncertainty-Accuracy-based Performance Measure for Feature Selection (UAPMFS) that uses an ensemble approach to measure both the accuracy and uncertainty of classifiers. UAPMFS uses bagging and uncertainty confusion matrix. This performance measure can be used in all wrapper methods to improve FS performance. We design two experiments to evaluate the performance of UAPMFS in wrapper methods. In experiments, we use the leave-one-variable-out strategy as the common strategy in wrapper methods to evaluate features. We also define a feature score function based on UAPMFS to rank and select features. In the first experiment, we investigate the importance of considering uncertainty in the FS process and show how neglecting uncertainty affects FS performance. In the second experiment, we compare the performance of the UAPMFS-based feature score function with the most common feature score functions for FS. Experimental results show the effectiveness of the proposed performance measure on different datasets.
  • Item
    Thumbnail Image
    Expert-Machine Collaborative Decision Making: We Need Healthy Competition
    Aickelin, U ; Maadi, M ; Khorshidi, HA (IEEE COMPUTER SOC, 2022-09-01)
    Much has been written and discussed in previous years about human-AI interaction. However, the debate so far has mainly concentrated on "Aaverage" decision makers, neglecting important differences when it is experts who require support. In this article, we are going to talk about expert-machine collaboration for decision-making. We investigate the current approaches for expert decision support and exemplify the inefficiency of this approach for a real clinical decision-making problem. We propose two solutions for expert-machine collaboration to overcome the shortcomings of the current state of the art. We think that the proposed approaches open new horizons for expert-machine collaborative decision-making.