Engineering and Information Technology Collected Works - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 23
  • Item
    No Preview Available
    Seizure occurrence is linked to multiday cycles in diverse physiological signals
    Gregg, NM ; Attia, TP ; Nasseri, M ; Joseph, B ; Karoly, P ; Cui, J ; Stirling, RE ; Viana, PF ; Richner, TJ ; Nurse, ES ; Schulze-Bonhage, A ; Cook, MJ ; Worrell, GA ; Richardson, MP ; Freestone, DR ; Brinkmann, BH (WILEY, 2023-06)
    OBJECTIVE: The factors that influence seizure timing are poorly understood, and seizure unpredictability remains a major cause of disability. Work in chronobiology has shown that cyclical physiological phenomena are ubiquitous, with daily and multiday cycles evident in immune, endocrine, metabolic, neurological, and cardiovascular function. Additionally, work with chronic brain recordings has identified that seizure risk is linked to daily and multiday cycles in brain activity. Here, we provide the first characterization of the relationships between the cyclical modulation of a diverse set of physiological signals, brain activity, and seizure timing. METHODS: In this cohort study, 14 subjects underwent chronic ambulatory monitoring with a multimodal wrist-worn sensor (recording heart rate, accelerometry, electrodermal activity, and temperature) and an implanted responsive neurostimulation system (recording interictal epileptiform abnormalities and electrographic seizures). Wavelet and filter-Hilbert spectral analyses characterized circadian and multiday cycles in brain and wearable recordings. Circular statistics assessed electrographic seizure timing and cycles in physiology. RESULTS: Ten subjects met inclusion criteria. The mean recording duration was 232 days. Seven subjects had reliable electroencephalographic seizure detections (mean = 76 seizures). Multiday cycles were present in all wearable device signals across all subjects. Seizure timing was phase locked to multiday cycles in five (temperature), four (heart rate, phasic electrodermal activity), and three (accelerometry, heart rate variability, tonic electrodermal activity) subjects. Notably, after regression of behavioral covariates from heart rate, six of seven subjects had seizure phase locking to the residual heart rate signal. SIGNIFICANCE: Seizure timing is associated with daily and multiday cycles in multiple physiological processes. Chronic multimodal wearable device recordings can situate rare paroxysmal events, like seizures, within a broader chronobiology context of the individual. Wearable devices may advance the understanding of factors that influence seizure risk and enable personalized time-varying approaches to epilepsy care.
  • Item
    No Preview Available
    Ambient air pollution and epileptic seizures: A panel study in Australia
    Chen, Z ; Yu, W ; Xu, R ; Karoly, PJ ; Maturana, M ; Payne, DE ; Li, L ; Nurse, ES ; Freestone, DR ; Li, S ; Burkitt, AN ; Cook, MJ ; Guo, Y ; Grayden, DB (WILEY, 2022-07)
    OBJECTIVE: Emerging evidence has shown that ambient air pollution affects brain health, but little is known about its effect on epileptic seizures. This work aimed to assess the association between daily exposure to ambient air pollution and the risk of epileptic seizures. METHODS: This study used epileptic seizure data from two independent data sources (NeuroVista and Seer App seizure diary). In the NeuroVista data set, 3273 seizures were recorded using intracranial electroencephalography (iEEG) from 15 participants with refractory focal epilepsy in Australia in 2010-2012. In the seizure diary data set, 3419 self-reported seizures were collected through a mobile application from 34 participants with epilepsy in Australia in 2018-2021. Daily average concentrations of carbon monoxide (CO), nitrogen dioxide (NO2 ), ozone (O3 ), particulate matter ≤10 μm in diameter (PM10 ), and sulfur dioxide (SO2 ) were retrieved from the Environment Protection Authority (EPA) based on participants' postcodes. A patient-time-stratified case-crossover design with the conditional Poisson regression model was used to determine the associations between air pollutants and epileptic seizures. RESULTS: A significant association between CO concentrations and epileptic seizure risks was observed, with an increased seizure risk of 4% (relative risk [RR]: 1.04, 95% confidence interval [CI]: 1.01-1.07) for an interquartile range (IQR) increase of CO concentrations (0.13 parts per million), whereas no significant associations were found for the other four air pollutants in the whole study population. Female participants had a significantly increased risk of seizures when exposed to elevated CO and NO2 , with RRs of 1.05 (95% CI: 1.01-1.08) and 1.09 (95% CI: 1.01-1.16), respectively. In addition, a significant association was observed between CO and the risk of subclinical seizures (RR: 1.20, 95% CI: 1.12-1.28). SIGNIFICANCE: Daily exposure to elevated CO concentrations may be associated with an increased risk of epileptic seizures, especially for subclinical seizures.
  • Item
    Thumbnail Image
    Anterior temporal encephaloceles: Elusive, important, and rewarding to treat
    Tse, GT ; Frydman, AS ; O'Shea, MF ; Fitt, GJ ; Weintrob, DL ; Murphy, MA ; Fabinyi, GC ; Bulluss, KJ ; Cook, MJ ; Berkovic, SF (WILEY, 2020-12)
    Objective To investigate the etiology and longitudinal clinical, neuropsychological, psychosocial, and surgical outcome profile of patients with medication refractory epilepsy and temporal encephaloceles with a view to highlight diagnostic clues and management strategies. Methods The comprehensive epilepsy program databases at two surgical epilepsy centers from January 2000 to October 2018 were reviewed for this observational study, to identify patients with encephaloceles causing temporal lobe epilepsy (TLE) and treated with surgical resection. Their clinical, radiological, neuropsychological, psychiatric, and surgical data were obtained. Body mass index (BMI) data were also reviewed due to possible correlation between idiopathic intracranial hypertension and encephaloceles. Results Thirteen patients (eight female) were identified; only three were recognized on initial magnetic resonance imaging (MRI) report. Temporal encephaloceles were identified on the left in eight patients, on the right in three patients, and bilaterally in two patients. One patient had a strong family history of encephaloceles. The median BMI for patients with seizure onset ≤20 years of age was 22.4, whereas for patients with onset >20 years median BMI was 32.6 (P = .06). Five patients underwent a focal lesionectomy, three patients had limited temporal lobectomy, and five patients had standard anterior temporal lobectomy. Median postoperative follow‐up was 5.5 years. All but one patient were free of disabling seizures. Nine of ten neuropsychologically tested patients had no discernable cognitive decline postoperatively. Postoperative psychosocial adjustment features were present in four patients. Significance Genetic factors and a possible association with idiopathic intracranial hypertension (given female predominance and elevated BMI) may contribute to the causation of temporal lobe encephaloceles. It is notable that a targeted surgical approach in the management of patients with TLE associated with encephaloceles has an excellent long‐term clinical and neuropsychological outcome. Subtle encephaloceles should be actively searched for in patients with drug‐resistant TLE because they significantly change surgical strategy and prognostication.
  • Item
    Thumbnail Image
    Signal quality and patient experience with wearable devices for epilepsy management
    Nasseri, M ; Nurse, E ; Glasstetter, M ; Boettcher, S ; Gregg, NM ; Nandakumar, AL ; Joseph, B ; Attia, TP ; Viana, PF ; Bruno, E ; Biondi, A ; Cook, M ; Worrell, GA ; Schulze-Bonhage, A ; Duempelmann, M ; Freestone, DR ; Richardson, MP ; Brinkmann, BH (WILEY, 2020-11)
    Noninvasive wearable devices have great potential to aid the management of epilepsy, but these devices must have robust signal quality, and patients must be willing to wear them for long periods of time. Automated machine learning classification of wearable biosensor signals requires quantitative measures of signal quality to automatically reject poor-quality or corrupt data segments. In this study, commercially available wearable sensors were placed on patients with epilepsy undergoing in-hospital or in-home electroencephalographic (EEG) monitoring, and healthy volunteers. Empatica E4 and Biovotion Everion were used to record accelerometry (ACC), photoplethysmography (PPG), and electrodermal activity (EDA). Byteflies Sensor Dots were used to record ACC and PPG, the Activinsights GENEActiv watch to record ACC, and Epitel Epilog to record EEG data. PPG and EDA signals were recorded for multiple days, then epochs of high-quality, marginal-quality, or poor-quality data were visually identified by reviewers, and reviewer annotations were compared to automated signal quality measures. For ACC, the ratio of spectral power from 0.8 to 5 Hz to broadband power was used to separate good-quality signals from noise. For EDA, the rate of amplitude change and prevalence of sharp peaks significantly differentiated between good-quality data and noise. Spectral entropy was used to assess PPG and showed significant differences between good-, marginal-, and poor-quality signals. EEG data were evaluated using methods to identify a spectral noise cutoff frequency. Patients were asked to rate the usability and comfort of each device in several categories. Patients showed a significant preference for the wrist-worn devices, and the Empatica E4 device was preferred most often. Current wearable devices can provide high-quality data and are acceptable for routine use, but continued development is needed to improve data quality, consistency, and management, as well as acceptability to patients.
  • Item
    Thumbnail Image
    Embodiment and Estrangement: Results from a First-in-Human "Intelligent BCI" Trial
    Gilbert, F ; Cook, M ; O'Brien, T ; Illes, J (SPRINGER, 2019-02)
    While new generations of implantable brain computer interface (BCI) devices are being developed, evidence in the literature about their impact on the patient experience is lagging. In this article, we address this knowledge gap by analysing data from the first-in-human clinical trial to study patients with implanted BCI advisory devices. We explored perceptions of self-change across six patients who volunteered to be implanted with artificially intelligent BCI devices. We used qualitative methodological tools grounded in phenomenology to conduct in-depth, semi-structured interviews. Results show that, on the one hand, BCIs can positively increase a sense of the self and control; on the other hand, they can induce radical distress, feelings of loss of control, and a rupture of patient identity. We conclude by offering suggestions for the proactive creation of preparedness protocols specific to intelligent-predictive and advisory-BCI technologies essential to prevent potential iatrogenic harms.
  • Item
    No Preview Available
    Placement of Deep Brain Electrodes in the Dog Using the Brainsight Frameless Stereotactic System: A Pilot Feasibility Study
    Long, S ; Frey, S ; Freestone, DR ; LeChevoir, M ; Stypulkowski, P ; Giftakis, J ; Cook, M (WILEY, 2014-01)
    BACKGROUND: Deep brain stimulation (DBS) together with concurrent EEG recording has shown promise in the treatment of epilepsy. A novel device is capable of combining these 2 functions and may prove valuable in the treatment of epilepsy in dogs. However, stereotactic implantation of electrodes in dogs has not yet been evaluated. OBJECTIVE: To evaluate the feasibility and safety of implanting stimulating and recording electrodes in the brain of normal dogs using the Brainsight system and to evaluate the function of a novel DBS and recording device. ANIMALS: Four male intact Greyhounds, confirmed to be normal by clinical and neurologic examinations and hematology and biochemistry testing. METHODS: MRI imaging of the brain was performed after attachment of fiducial markers. MRI scans were used to calculate trajectories for electrode placement in the thalamus and hippocampus, which was performed via burr hole craniotomy. Postoperative CT scanning was performed to evaluate electrode location and accuracy of placement was calculated. Serial neurologic examinations were performed to evaluate neurologic deficits and EEG recordings obtained to evaluate the effects of stimulation. RESULTS: Electrodes were successfully placed in 3 of 4 dogs with a mean accuracy of 4.6 ± 1.5 mm. EEG recordings showed evoked potentials in response to stimulation with a circadian variation in time-to-maximal amplitude. No neurologic deficits were seen in any dog. CONCLUSIONS AND CLINICAL IMPORTANCE: Stereotactic placement of electrodes is safe and feasible in the dog. The development of a novel device capable of providing simultaneous neurostimulation and EEG recording potentially represents a major advance in the treatment of epilepsy.
  • Item
    Thumbnail Image
    Global Expression Profiling in Epileptogenesis: Does It Add to the Confusion?
    Wang, YY ; Smith, P ; Murphy, M ; Cook, M (WILEY, 2010-01)
    Since the inception of global gene expression profiling platforms in the mid-1990s, there has been a significant increase in publications of differentially expressed genes in the process of epileptogenesis. In particular for mesial temporal lobe epilepsy, the presence of a latency period between the first manifestation of seizures to chronic epilepsy provides the opportunity for therapeutic interventions at the molecular biology level. Using global expression profiling techniques, approximately 2000 genes have been published demonstrating differential expression in mesial temporal epilepsy. The majority of these changes, however, are specific to laboratory or experimental conditions with only 53 genes demonstrating changes in more than two publications. To this end, we review the current status of gene expression profiling in epileptogenesis and suggest standard guidelines to be followed for greater accuracy and reproducibility of results.
  • Item
    Thumbnail Image
    Cathodal transcranial direct-current stimulation for treatment of drug-resistant temporal lobe epilepsy: A pilot randomized controlled trial.
    Zoghi, M ; O'Brien, TJ ; Kwan, P ; Cook, MJ ; Galea, M ; Jaberzadeh, S (Wiley, 2016-12)
    OBJECTIVE: To investigate the effect of cathodal transcranial direct-current stimulation (c-tDCS) on seizure frequency in patients with drug-resistant temporal lobe epilepsy (TLE). METHOD: Twenty-nine patients with drug-resistant TLE participated in this study. They were randomized to experimental or sham group. Twenty participants (experimental group) received within-session repeated c-tDCS intervention over the affected temporal lobe, and nine (sham group) received sham tDCS. Paired-pulse transcranial magnetic stimulation was used to assess short interval intracortical inhibition (SICI) in primary motor cortex ipsilateral to the affected temporal lobe. SICI was measured from motor evoked potentials recorded from the contralateral first dorsal interosseous muscle. Adverse effects were monitored during and after each intervention in both groups. A seizure diary was given to each participant to complete for 4 weeks following the tDCS intervention. The mean response ratio was calculated from their seizure rates before and after the tDCS intervention. RESULTS: The experimental group showed a significant increase in SICI compared to the sham group (F = 10.3, p = 0.005). None of the participants reported side effects of moderate or severe degree. The mean response ratio in seizure frequency was -42.14% (standard deviation [SD] 35.93) for the experimental group and -16.98% (SD 52.41) for the sham group. SIGNIFICANCE: Results from this pilot study suggest that tDCS may be a safe and efficacious nonpharmacologic intervention for patients with drug-resistant TLE. Further evaluation in larger double-blind randomized controlled trials is warranted.
  • Item
    Thumbnail Image
    Electroencephalography in the Diagnosis of Genetic Generalized Epilepsy Syndromes
    Seneviratne, U ; Cook, MJ ; D'Souza, WJ (FRONTIERS MEDIA SA, 2017-09-25)
    Genetic generalized epilepsy (GGE) consists of several syndromes diagnosed and classified on the basis of clinical features and electroencephalographic (EEG) abnormalities. The main EEG feature of GGE is bilateral, synchronous, symmetric, and generalized spike-wave complex. Other classic EEG abnormalities are polyspikes, epileptiform K-complexes and sleep spindles, polyspike-wave discharges, occipital intermittent rhythmic delta activity, eye-closure sensitivity, fixation-off sensitivity, and photoparoxysmal response. However, admixed with typical changes, atypical epileptiform discharges are also commonly seen in GGE. There are circadian variations of generalized epileptiform discharges. Sleep, sleep deprivation, hyperventilation, intermittent photic stimulation, eye closure, and fixation-off are often used as activation techniques to increase the diagnostic yield of EEG recordings. Reflex seizure-related EEG abnormalities can be elicited by the use of triggers such as cognitive tasks and pattern stimulation during the EEG recording in selected patients. Distinct electrographic abnormalities to help classification can be identified among different electroclinical syndromes.
  • Item
    Thumbnail Image
    Managing drug-resistant epilepsy: challenges and solutions
    Dalic, L ; Cook, MJ (DOVE MEDICAL PRESS LTD, 2016)
    Despite the development of new antiepileptic drugs (AEDs), ~20%-30% of people with epilepsy remain refractory to treatment and are said to have drug-resistant epilepsy (DRE). This multifaceted condition comprises intractable seizures, neurobiochemical changes, cognitive decline, and psychosocial dysfunction. An ongoing challenge to both researchers and clinicians alike, DRE management is complicated by the heterogeneity among this patient group. The underlying mechanism of DRE is not completely understood. Many hypotheses exist, and relate to both the intrinsic characteristics of the particular epilepsy (associated syndrome/lesion, initial response to AED, and the number and type of seizures prior to diagnosis) and other pharmacological mechanisms of resistance. The four current hypotheses behind pharmacological resistance are the "transporter", "target", "network", and "intrinsic severity" hypotheses, and these are reviewed in this paper. Of equal challenge is managing patients with DRE, and this requires a multidisciplinary approach, involving physicians, surgeons, psychiatrists, neuropsychologists, pharmacists, dietitians, and specialist nurses. Attention to comorbid psychiatric and other diseases is paramount, given the higher prevalence in this cohort and associated poorer health outcomes. Treatment options need to consider the economic burden to the patient and the likelihood of AED compliance and tolerability. Most importantly, higher mortality rates, due to comorbidities, suicide, and sudden death, emphasize the importance of seizure control in reducing this risk. Overall, resective surgery offers the best rates of seizure control. It is not an option for all patients, and there is often a significant delay in referring to epilepsy surgery centers. Optimization of AEDs, identification and treatment of comorbidities, patient education to promote adherence to treatment, and avoidance of triggers should be periodically performed until further insights regarding causative pathology can guide better therapies.