Engineering and Information Technology Collected Works - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 14
  • Item
    Thumbnail Image
    Embodiment and Estrangement: Results from a First-in-Human "Intelligent BCI" Trial
    Gilbert, F ; Cook, M ; O'Brien, T ; Illes, J (SPRINGER, 2019-02)
    While new generations of implantable brain computer interface (BCI) devices are being developed, evidence in the literature about their impact on the patient experience is lagging. In this article, we address this knowledge gap by analysing data from the first-in-human clinical trial to study patients with implanted BCI advisory devices. We explored perceptions of self-change across six patients who volunteered to be implanted with artificially intelligent BCI devices. We used qualitative methodological tools grounded in phenomenology to conduct in-depth, semi-structured interviews. Results show that, on the one hand, BCIs can positively increase a sense of the self and control; on the other hand, they can induce radical distress, feelings of loss of control, and a rupture of patient identity. We conclude by offering suggestions for the proactive creation of preparedness protocols specific to intelligent-predictive and advisory-BCI technologies essential to prevent potential iatrogenic harms.
  • Item
    No Preview Available
    Placement of Deep Brain Electrodes in the Dog Using the Brainsight Frameless Stereotactic System: A Pilot Feasibility Study
    Long, S ; Frey, S ; Freestone, DR ; LeChevoir, M ; Stypulkowski, P ; Giftakis, J ; Cook, M (WILEY, 2014-01)
    BACKGROUND: Deep brain stimulation (DBS) together with concurrent EEG recording has shown promise in the treatment of epilepsy. A novel device is capable of combining these 2 functions and may prove valuable in the treatment of epilepsy in dogs. However, stereotactic implantation of electrodes in dogs has not yet been evaluated. OBJECTIVE: To evaluate the feasibility and safety of implanting stimulating and recording electrodes in the brain of normal dogs using the Brainsight system and to evaluate the function of a novel DBS and recording device. ANIMALS: Four male intact Greyhounds, confirmed to be normal by clinical and neurologic examinations and hematology and biochemistry testing. METHODS: MRI imaging of the brain was performed after attachment of fiducial markers. MRI scans were used to calculate trajectories for electrode placement in the thalamus and hippocampus, which was performed via burr hole craniotomy. Postoperative CT scanning was performed to evaluate electrode location and accuracy of placement was calculated. Serial neurologic examinations were performed to evaluate neurologic deficits and EEG recordings obtained to evaluate the effects of stimulation. RESULTS: Electrodes were successfully placed in 3 of 4 dogs with a mean accuracy of 4.6 ± 1.5 mm. EEG recordings showed evoked potentials in response to stimulation with a circadian variation in time-to-maximal amplitude. No neurologic deficits were seen in any dog. CONCLUSIONS AND CLINICAL IMPORTANCE: Stereotactic placement of electrodes is safe and feasible in the dog. The development of a novel device capable of providing simultaneous neurostimulation and EEG recording potentially represents a major advance in the treatment of epilepsy.
  • Item
    Thumbnail Image
    Global Expression Profiling in Epileptogenesis: Does It Add to the Confusion?
    Wang, YY ; Smith, P ; Murphy, M ; Cook, M (WILEY, 2010-01)
    Since the inception of global gene expression profiling platforms in the mid-1990s, there has been a significant increase in publications of differentially expressed genes in the process of epileptogenesis. In particular for mesial temporal lobe epilepsy, the presence of a latency period between the first manifestation of seizures to chronic epilepsy provides the opportunity for therapeutic interventions at the molecular biology level. Using global expression profiling techniques, approximately 2000 genes have been published demonstrating differential expression in mesial temporal epilepsy. The majority of these changes, however, are specific to laboratory or experimental conditions with only 53 genes demonstrating changes in more than two publications. To this end, we review the current status of gene expression profiling in epileptogenesis and suggest standard guidelines to be followed for greater accuracy and reproducibility of results.
  • Item
    Thumbnail Image
    Cathodal transcranial direct-current stimulation for treatment of drug-resistant temporal lobe epilepsy: A pilot randomized controlled trial.
    Zoghi, M ; O'Brien, TJ ; Kwan, P ; Cook, MJ ; Galea, M ; Jaberzadeh, S (Wiley, 2016-12)
    OBJECTIVE: To investigate the effect of cathodal transcranial direct-current stimulation (c-tDCS) on seizure frequency in patients with drug-resistant temporal lobe epilepsy (TLE). METHOD: Twenty-nine patients with drug-resistant TLE participated in this study. They were randomized to experimental or sham group. Twenty participants (experimental group) received within-session repeated c-tDCS intervention over the affected temporal lobe, and nine (sham group) received sham tDCS. Paired-pulse transcranial magnetic stimulation was used to assess short interval intracortical inhibition (SICI) in primary motor cortex ipsilateral to the affected temporal lobe. SICI was measured from motor evoked potentials recorded from the contralateral first dorsal interosseous muscle. Adverse effects were monitored during and after each intervention in both groups. A seizure diary was given to each participant to complete for 4 weeks following the tDCS intervention. The mean response ratio was calculated from their seizure rates before and after the tDCS intervention. RESULTS: The experimental group showed a significant increase in SICI compared to the sham group (F = 10.3, p = 0.005). None of the participants reported side effects of moderate or severe degree. The mean response ratio in seizure frequency was -42.14% (standard deviation [SD] 35.93) for the experimental group and -16.98% (SD 52.41) for the sham group. SIGNIFICANCE: Results from this pilot study suggest that tDCS may be a safe and efficacious nonpharmacologic intervention for patients with drug-resistant TLE. Further evaluation in larger double-blind randomized controlled trials is warranted.
  • Item
    Thumbnail Image
    Electroencephalography in the Diagnosis of Genetic Generalized Epilepsy Syndromes
    Seneviratne, U ; Cook, MJ ; D'Souza, WJ (FRONTIERS MEDIA SA, 2017-09-25)
    Genetic generalized epilepsy (GGE) consists of several syndromes diagnosed and classified on the basis of clinical features and electroencephalographic (EEG) abnormalities. The main EEG feature of GGE is bilateral, synchronous, symmetric, and generalized spike-wave complex. Other classic EEG abnormalities are polyspikes, epileptiform K-complexes and sleep spindles, polyspike-wave discharges, occipital intermittent rhythmic delta activity, eye-closure sensitivity, fixation-off sensitivity, and photoparoxysmal response. However, admixed with typical changes, atypical epileptiform discharges are also commonly seen in GGE. There are circadian variations of generalized epileptiform discharges. Sleep, sleep deprivation, hyperventilation, intermittent photic stimulation, eye closure, and fixation-off are often used as activation techniques to increase the diagnostic yield of EEG recordings. Reflex seizure-related EEG abnormalities can be elicited by the use of triggers such as cognitive tasks and pattern stimulation during the EEG recording in selected patients. Distinct electrographic abnormalities to help classification can be identified among different electroclinical syndromes.
  • Item
    Thumbnail Image
    Managing drug-resistant epilepsy: challenges and solutions
    Dalic, L ; Cook, MJ (DOVE MEDICAL PRESS LTD, 2016)
    Despite the development of new antiepileptic drugs (AEDs), ~20%-30% of people with epilepsy remain refractory to treatment and are said to have drug-resistant epilepsy (DRE). This multifaceted condition comprises intractable seizures, neurobiochemical changes, cognitive decline, and psychosocial dysfunction. An ongoing challenge to both researchers and clinicians alike, DRE management is complicated by the heterogeneity among this patient group. The underlying mechanism of DRE is not completely understood. Many hypotheses exist, and relate to both the intrinsic characteristics of the particular epilepsy (associated syndrome/lesion, initial response to AED, and the number and type of seizures prior to diagnosis) and other pharmacological mechanisms of resistance. The four current hypotheses behind pharmacological resistance are the "transporter", "target", "network", and "intrinsic severity" hypotheses, and these are reviewed in this paper. Of equal challenge is managing patients with DRE, and this requires a multidisciplinary approach, involving physicians, surgeons, psychiatrists, neuropsychologists, pharmacists, dietitians, and specialist nurses. Attention to comorbid psychiatric and other diseases is paramount, given the higher prevalence in this cohort and associated poorer health outcomes. Treatment options need to consider the economic burden to the patient and the likelihood of AED compliance and tolerability. Most importantly, higher mortality rates, due to comorbidities, suicide, and sudden death, emphasize the importance of seizure control in reducing this risk. Overall, resective surgery offers the best rates of seizure control. It is not an option for all patients, and there is often a significant delay in referring to epilepsy surgery centers. Optimization of AEDs, identification and treatment of comorbidities, patient education to promote adherence to treatment, and avoidance of triggers should be periodically performed until further insights regarding causative pathology can guide better therapies.
  • Item
    Thumbnail Image
    Exercise-induced seizures and lateral asymmetry in patients with temporal lobe epilepsy
    Kamel, JT ; Badawy, RAB ; Cook, MJ (ELSEVIER SCIENCE INC, 2014)
    OBJECTIVE: The objective of this case report is to better characterize the clinical features and potential pathophysiological mechanisms of exercise-induced seizures. METHODS: We report a case series of ten patients from a tertiary epilepsy center, where a clear history was obtained of physical exercise as a reproducible trigger for seizures. RESULTS: The precipitating type of exercise was quite specific for each patient, and various forms of exercise are described including running, swimming, playing netball, dancing, cycling, weight lifting, and martial arts. The level of physical exertion also correlated with the likelihood of seizure occurrence. All ten patients had temporal lobe abnormalities, with nine of the ten patients having isolated temporal lobe epilepsies, as supported by seizure semiology, EEG recordings, and both structural and functional imaging. Nine of the ten patients had seizures that were lateralized to the left (dominant) hemisphere. Five patients underwent surgical resection, with no successful long-term postoperative outcomes. CONCLUSIONS: Exercise may be an underrecognized form of reflex epilepsy, which tended to be refractory to both medical and surgical interventions in our patients. Almost all patients in our cohort had seizures localizing to the left temporal lobe. We discuss potential mechanisms by which exercise may precipitate seizures, and its relevance regarding our understanding of temporal lobe epilepsy and lateralization of seizures. Recognition of, as well as advice regarding avoidance of, known triggers forms an important part of management of these patients.
  • Item
    Thumbnail Image
    Characteristics of Epileptiform Discharge Duration and Interdischarge Interval in Genetic Generalized Epilepsies
    Seneviratne, U ; Boston, RC ; Cook, MJ ; D'Souza, WJ (FRONTIERS MEDIA SA, 2018-02-19)
    We sought to investigate (1) the characteristics of epileptiform discharge (ED) duration and interdischarge interval (IDI) and (2) the influence of vigilance state on the ED duration and IDI in genetic generalized epilepsy (GGE). In a cohort of patients diagnosed with GGE, 24-h ambulatory EEG recordings were performed prospectively. We then tabulated durations, IDI, and vigilance state in relation to all EDs captured on EEGs. We used K-means cluster analysis and finite mixture modeling to quantify and characterize the groups of ED duration and IDI. To investigate the influence of sleep, we calculated the mean, median, and SEM in each population from all subjects for sleep state and wakefulness separately, followed by the Kruskal-Wallis test to compare the groups. We analyzed 4,679 EDs and corresponding IDI from 23 abnormal 24-h ambulatory EEGs. Our analysis defined two populations of ED durations and IDI: short and long. In all populations, both ED durations and IDI were significantly longer in wakefulness. Our results highlight different characteristics of ED populations in GGE and the influence by the sleep-wake cycle.
  • Item
  • Item
    Thumbnail Image
    Interictal and ictal source localization for epilepsy surgery using high-density EEG with MEG: a prospective long-term study
    Plummer, C ; Vogrin, SJ ; Woods, WP ; Murphy, MA ; Cook, MJ ; Liley, DTJ (OXFORD UNIV PRESS, 2019-04)
    Drug-resistant focal epilepsy is a major clinical problem and surgery is under-used. Better non-invasive techniques for epileptogenic zone localization are needed when MRI shows no lesion or an extensive lesion. The problem is interictal and ictal localization before propagation from the epileptogenic zone. High-density EEG (HDEEG) and magnetoencephalography (MEG) offer millisecond-order temporal resolution to address this but co-acquisition is challenging, ictal MEG studies are rare, long-term prospective studies are lacking, and fundamental questions remain. Should HDEEG-MEG discharges be assessed independently [electroencephalographic source localization (ESL), magnetoencephalographic source localization (MSL)] or combined (EMSL) for source localization? Which phase of the discharge best characterizes the epileptogenic zone (defined by intracranial EEG and surgical resection relative to outcome)? Does this differ for interictal and ictal discharges? Does MEG detect mesial temporal lobe discharges? Thirteen patients (10 non-lesional, three extensive-lesional) underwent synchronized HDEEG-MEG (72-94 channel EEG, 306-sensor MEG). Source localization (standardized low-resolution tomographic analysis with MRI patient-individualized boundary-element method) was applied to averaged interictal epileptiform discharges (IED) and ictal discharges at three phases: 'early-phase' (first latency 90% explained variance), 'mid-phase' (first of 50% rising-phase, 50% mean global field power), 'late-phase' (negative peak). 'Earliest-solution' was the first of the three early-phase solutions (ESL, MSL, EMSL). Prospective follow-up was 3-21 (median 12) months before surgery, 14-39 (median 21) months after surgery. IEDs (n = 1474) were recorded, seen in: HDEEG only, 626 (42%); MEG only, 232 (16%); and both 616 (42%). Thirty-three seizures were captured, seen in: HDEEG only, seven (21%); MEG only, one (3%); and both 25 (76%). Intracranial EEG was done in nine patients. Engel scores were I (9/13, 69%), II (2/13,15%), and III (2/13). MEG detected baso-mesial temporal lobe epileptogenic zone sources. Epileptogenic zone OR [odds ratio(s)] were significantly higher for earliest-solution versus early-phase IED-surgical resection and earliest-solution versus all mid-phase and late-phase solutions. ESL outperformed EMSL for ictal-surgical resection [OR 3.54, 95% confidence interval (CI) 1.09-11.55, P = 0.036]. MSL outperformed EMSL for IED-intracranial EEG (OR 4.67, 95% CI 1.19-18.34, P = 0.027). ESL outperformed MSL for ictal-surgical resection (OR 3.73, 95% CI 1.16-12.03, P = 0.028) but was outperformed by MSL for IED-intracranial EEG (OR 0.18, 95% CI 0.05-0.73, P = 0.017). Thus, (i) HDEEG and MEG source solutions more accurately localize the epileptogenic zone at the earliest resolvable phase of interictal and ictal discharges, not mid-phase (as is common practice) or late peak-phase (when signal-to-noise ratios are maximal); (ii) from empirical observation of the differential timing of HDEEG and MEG discharges and based on the superiority of ESL plus MSL over either modality alone and over EMSL, concurrent HDEEG-MEG signals should be assessed independently, not combined; (iii) baso-mesial temporal lobe sources are detectable by MEG; and (iv) MEG is not 'more accurate' than HDEEG-emphasis is best placed on the earliest signal (whether HDEEG or MEG) amenable to source localization. Our findings challenge current practice and our reliance on invasive monitoring in these patients. 10.1093/brain/awz015_video1 awz015media1 6018582479001.