University Services - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    No Preview Available
    Genetics of epilepsy The testimony of twins in the molecular era
    Vadlamudi, L ; Milne, RL ; Lawrence, K ; Heron, SE ; Eckhaus, J ; Keay, D ; Connellan, M ; Torn-Broers, Y ; Howell, RA ; Mulley, JC ; Scheffer, IE ; Dibbens, LM ; Hopper, JL ; Berkovic, SF (LIPPINCOTT WILLIAMS & WILKINS, 2014-09-16)
    OBJECTIVE: Analysis of twins with epilepsy to explore the genetic architecture of specific epilepsies, to evaluate the applicability of the 2010 International League Against Epilepsy (ILAE) organization of epilepsy syndromes, and to integrate molecular genetics with phenotypic analyses. METHODS: A total of 558 twin pairs suspected to have epilepsy were ascertained from twin registries (69%) or referral (31%). Casewise concordance estimates were calculated for epilepsy syndromes. Epilepsies were then grouped according to the 2010 ILAE organizational scheme. Molecular genetic information was utilized where applicable. RESULTS: Of 558 twin pairs, 418 had confirmed seizures. A total of 534 twin individuals were affected. There were higher twin concordance estimates for monozygotic (MZ) than for dizygotic (DZ) twins for idiopathic generalized epilepsies (MZ = 0.77; DZ = 0.35), genetic epilepsy with febrile seizures plus (MZ = 0.85; DZ = 0.25), and focal epilepsies (MZ = 0.40; DZ = 0.03). Utilizing the 2010 ILAE scheme, the twin data clearly demonstrated genetic influences in the syndromes designated as genetic. Of the 384 tested twin individuals, 10.9% had mutations of large effect in known epilepsy genes or carried validated susceptibility alleles. CONCLUSIONS: Twin studies confirm clear genetic influences for specific epilepsies. Analysis of the twin sample using the 2010 ILAE scheme strongly supported the validity of grouping the "genetic" syndromes together and shows this organizational scheme to be a more flexible and biologically meaningful system than previous classifications. Successful selected molecular testing applied to this cohort is the prelude to future large-scale next-generation sequencing of epilepsy research cohorts. Insights into genetic architecture provided by twin studies provide essential data for optimizing such approaches.
  • Item
    No Preview Available
    Rotavirus inhibits IFN-induced STAT nuclear translocation by a mechanism that acts after STAT binding to importin-α
    Holloway, G ; Dang, VT ; Jans, DA ; Coulson, BS (SOC GENERAL MICROBIOLOGY, 2014-08)
    The importance of innate immunity to rotaviruses is exemplified by the range of strategies evolved by rotaviruses to interfere with the IFN response. We showed previously that rotaviruses block gene expression induced by type I and II IFNs, through a mechanism allowing activation of signal transducer and activator of transcription (STAT) 1 and STAT2 but preventing their nuclear accumulation. This normally occurs through activated STAT1/2 dimerization, enabling an interaction with importin α5 that mediates transport into the nucleus. In rotavirus-infected cells, STAT1/2 inhibition may limit the antiviral actions of IFN produced early in infection. Here we further analysed the block to STAT1/2 nuclear accumulation, showing that activated STAT1 accumulates in the cytoplasm in rotavirus-infected cells. STAT1/2 nuclear accumulation was inhibited by rotavirus even in the presence of the nuclear export inhibitor Leptomycin B, demonstrating that enhanced nuclear export is not involved in STAT1/2 cytoplasmic retention. The ability to inhibit STAT nuclear translocation was completely conserved amongst the group A rotaviruses tested, including a divergent avian strain. Analysis of mutant rotaviruses indicated that residues after amino acid 47 of NSP1 are dispensable for STAT inhibition. Furthermore, expression of any of the 12 Rhesus monkey rotavirus proteins did not inhibit IFN-stimulated STAT1 nuclear translocation. Finally, co-immunoprecipitation experiments from transfected epithelial cells showed that STAT1/2 binds importin α5 normally following rotavirus infection. These findings demonstrate that rotavirus probably employs a novel strategy to inhibit IFN-induced STAT signalling, which acts after STAT activation and binding to the nuclear import machinery.