Veterinary Biosciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 6 of 6
  • Item
    Thumbnail Image
    Effects of polymyxin-B on TNF-α production in equine whole blood stimulated with three different bacterial toxins
    Bauquier, JR ; Tennent-Brown, BS ; Tudor, E ; Bailey, SR (WILEY, 2018-02)
    Polymyxin-B is used to treat equine systemic inflammation. Bacterial toxins other than lipopolysaccharide (LPS) contribute to systemic inflammation but the effects of polymyxin-B on these are poorly defined. Whole blood aliquots from six healthy horses diluted 1:1 with RPMI were incubated for 21 hr with 1 μg/ml of LPS, lipoteichoic acid (LTA) or peptidoglycan (PGN) in the presence of increasing concentrations of polymyxin-B (10-3000 μg/ml). A murine L929 fibroblast bioassay was used to measure TNF-α activity. Polymyxin-B significantly inhibited the effects of all three bacterial toxins. Analysis of variance showed the IC50 value for polymyxin-B for TNF-α inhibition caused by LTA (11.19 ± 2.89 μg/ml polymyxin-B) was significantly lower (p = .009) than the values for LPS (46.48 ± 9.93 μg/ml) and PGN (54.44 ± 8.97 μg/ml). There was no significant difference in IC50 values between LPS and PGN (p > .05). Maximum inhibition of TNF-α was 77.4%, 73.0% and 82.7% for LPS, PGN and LTA, respectively and was not significantly different between toxins. At the two highest concentrations of polymyxin-B, TNF-α began to increase. These data suggest that polymyxin-B may inhibit the effects of bacterial toxins other than LPS and might be a more potent inhibitor of LTA than LPS or PGN.
  • Item
    Thumbnail Image
    Plasma HMGB-1 and Nucleosome Concentrations in Horses with Colic and Healthy Horses
    Bauquier, JR ; Forbes, G ; Nath, L ; Tudor, E ; Bailey, SR (WILEY-BLACKWELL, 2016)
    BACKGROUND: Acute gastrointestinal disease occurs commonly in horses. Novel biomarkers might improve the understanding of SIRS and aid diagnosis and determination of prognosis. HYPOTHESES: Increased plasma concentrations of the biomarkers HMGB-1 and nucleosomes are associated with severity of gastrointestinal lesions in horses; concentrations of these biomarkers will be greater in horses with lesions more likely to cause SIRS; and will provide additional information compared with standard biomarkers fibrinogen and SAA. ANIMALS: Thirty horses with gastrointestinal disease, 22 healthy horses. METHODS: Prospective study. Plasma samples taken on admission were used for measurement of HMGB-1, nucleosomes, fibrinogen, and SAA. Values were compared between healthy horses and those with gastrointestinal disease, and between horses with gastrointestinal disease grouped by lesion type (inflammatory, strangulating, and nonstrangulating). Correlations between biomarkers were assessed. RESULTS: Plasma concentrations of all biomarkers were significantly higher in horses with gastrointestinal disease compared to healthy horses (P ≤ .001). HMGB-1 and nucleosomes were significantly higher in inflammatory and strangulating groups compared to healthy horses (3.5-fold and 5.4-fold increases, respectively, for HMGB-1 (P < .05) and 4.8-fold and 5.6-fold increases for nucleosomes (P < .05)), but concentrations in the group with nonstrangulating disease did not differ from healthy horses. There was significant correlation between HMGB-1 and nucleosomes (Spearman's r = 0.623; P < .001), and fibrinogen and SAA (Spearman's r = 0.801; P < .001) but not between other biomarkers. CONCLUSIONS AND CLINICAL IMPORTANCE: High mobility group box-1 and nucleosomes might have use as biomarkers for horses with gastrointestinal disease. Further studies are required to determine kinetics and prognostic value of serial measurements of these biomarkers in horses.
  • Item
    Thumbnail Image
    Effect of the p38MAPKinhibitor doramapimod on the systemic inflammatory response to intravenous lipopolysaccharide in horses
    Bauquier, J ; Tudor, E ; Bailey, S (WILEY, 2020-09)
    BACKGROUND: Doramapimod, a p38 MAPK inhibitor, is a potent anti-inflammatory drug that decreases inflammatory cytokine production in equine whole blood in vitro. It may have benefits for treating systemic inflammation in horses. OBJECTIVE: To determine whether doramapimod is well tolerated when administered IV to horses, and whether it has anti-inflammatory effects in horses in a low-dose endotoxemia model. ANIMALS: Six Standardbred horses. METHODS: Tolerability study, followed by a blinded, randomized, placebo-controlled cross-over study. Horses were given doramapimod, and clinical and clinicopathological variables were monitored for 24 hours. Horses then were treated with doramapimod or placebo, followed by a low dose infusion of lipopolysaccharide (LPS). Clinical variables (heart rate, rectal temperature, noninvasive blood pressure), leukocyte count and tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1β) concentrations were measured at multiple time points until 6 hours post-LPS infusion. RESULTS: No adverse effects or clinicopathological changes were seen in the safety study. When treated with doramapimod as compared to placebo, horses had significantly lower heart rates (P = .03), rectal temperatures (P = .03), and cytokine concentrations (P = .03 for TNF-α and IL-1β), and a significantly higher white blood cell count (P = .03) after LPS infusion. CONCLUSIONS AND CLINICAL IMPORTANCE: Doramapimod has clinically relevant anti-inflammatory effects in horses, likely mediated by a decrease in leukocyte activation and decrease in the release of pro-inflammatory cytokines. To evaluate its potential as a novel treatment for systemic inflammatory response syndrome in horses, clinical trials will be necessary to determine its efficacy in naturally occurring disease.
  • Item
    Thumbnail Image
    Validation of canine uterine and testicular arteries for the functional characterisation of receptor-mediated contraction as a replacement for laboratory animal tissues in teaching
    Mulcahy, L ; Tudor, E ; Bailey, SR ; Torrens, C (PUBLIC LIBRARY SCIENCE, 2020-05-26)
    Teaching practicals for receptor physiology/pharmacology in medical and veterinary schools have involved the use of in vitro experiments using tissues from laboratory animals, which have been killed for isolated vascular strip or ring preparations. However, the use of scavenged tissues has been advocated to reduce animal use. Utilising discarded tissues from routine surgical procedures, such as canine neutering, has not previously been investigated. Canine testicular and uterine tissues (discarded tissues) were obtained from routine neutering procedures performed by the veterinary team at a local animal neutering clinic for stray dogs. Rings of uterine and testicular artery were dissected and mounted on a Mulvany-Halpern wire myograph in order to characterize the adrenergic and serotonergic receptors mediating vasoconstriction. Cumulative contractile concentration-response curves were constructed for the alpha adrenoceptor agonists epinephrine (α1 and α2 receptors), phenylephrine (α1 selective) and UK14304 (α2 selective). Pre-treatment with the α1-selective antagonist, prazosin, was also investigated. The response to serotonin (5-HT) receptor agonists were also investigated, including 5-HT (acting at both 5-HT1 and 5-HT2 receptors), 5-carboxamidotryptamine (5-CT; 5-HT1 selective) and α-methyl 5-HT (5-HT2 selective). A contractile response was observed in both canine uterine and testicular arteries to epinephrine and phenylephrine, and prazosin caused a dose-dependent parallel rightward shift in the phenylephrine dose-response curve (pA2 values of 7.97 and 8.39, respectively). UK14304 caused a contractile response in canine testicular arteries but very little appreciable contractile response in uterine arteries. The maximum responses produced by the uterine arteries to 5-HT was significantly lower than those of the testicular arteries. In the testicular artery, the 5-HT2 receptor selective agonist, α-methyl 5-HT, produced a similar contractile response to 5-HT but the administration of 5-CT failed to produce a response in either the testicular or uterine artery segments. These results validate the use of discarded tissue from routine canine neutering procedures as a useful source of vascular tissue for pharmacological teaching, for characterizing alpha and 5-HT receptor contractile responses.
  • Item
    No Preview Available
    Endothelial dysfunction in an ovine model of collagen-induced arthritis
    Dooley, LM ; Washington, EA ; Abdalmula, A ; Tudor, EM ; Kimpton, WG ; Bailey, SR (S. Karger AG, 2014-01-01)
    Background: Rheumatoid arthritis (RA) induces systemic inflammation, producing a range of co-morbidities including cardiovascular disease. An early vascular change is endothelial dysfunction, characterized by reduced endothelium-dependent vasodilation. The aim of this study was to assess endothelial function in isolated coronary and digital arteries using an ovine model of collagen-induced RA. Methods: Sheep were culled following induction of arthritis, and their endothelial function was compared to that of normal sheep. Paired arterial segments were mounted in a wire myograph and dilated with endothelium-dependent vasodilators [bradykinin, serotonin, carbachol and adenosine diphosphate (ADP); linked to either Gi or Gq signalling pathways] and endothelium-independent dilators (adenosine and sodium nitroprusside) to construct cumulative concentration-response curves. Results: Coronary arteries from arthritic sheep exhibited a significantly greater EC50 value for bradykinin-induced relaxation compared to non-arthritic controls (2.9 × 10-8M for arthritic sheep vs. 8.6 × 10-9M for controls). Digital arteries from arthritic sheep also exhibited a significantly greater EC50 for relaxation to ADP and a significant decrease in the carbachol maximal response. Responses to sodium nitroprusside were unchanged in both coronary and digital arteries. Conclusion: Sheep with RA demonstrated attenuated arterial relaxation to endothelium-dependent vasodilators. This may provide a useful model of endothelial dysfunction in chronic inflammatory conditions. The dysfunction did not appear to be associated with one specific G-protein signalling pathway. © 2014 S. Karger AG, Basel.
  • Item
    Thumbnail Image
    Effect of Mesenchymal Precursor Cells on the Systemic Inflammatory Response and Endothelial Dysfunction in an Ovine Model of Collagen-Induced Arthritis
    Dooley, LM ; Abdalmula, A ; Washington, EA ; Kaufman, C ; Tudor, EM ; Ghosh, P ; Itescu, S ; Kimpton, WG ; Bailey, SR ; Almeida-Porada, GD (PUBLIC LIBRARY SCIENCE, 2015-05-07)
    BACKGROUND AND AIM: Mesenchymal precursor cells (MPC) are reported to possess immunomodulatory properties that may prove beneficial in autoimmune and other inflammatory conditions. However, their mechanism of action is poorly understood. A collagen-induced arthritis model has been previously developed which demonstrates local joint inflammation and systemic inflammatory changes. These include not only increased levels of inflammatory markers, but also vascular endothelial cell dysfunction, characterised by reduced endothelium-dependent vasodilation. This study aimed to characterise the changes in systemic inflammatory markers and endothelial function following the intravenous administration of MPC, in the ovine model. METHODS: Arthritis was induced in sixteen adult sheep by administration of bovine type II collagen into the hock joint following initial sensitisation. After 24h, sheep were administered either 150 million allogeneic ovine MPCs intravenously, or saline only. Fibrinogen and serum amyloid-A were measured in plasma to assess systemic inflammation, along with pro-inflammatory and anti-inflammatory cytokines. Animals were necropsied two weeks following arthritis induction. Coronary and digital arterial segments were mounted in a Mulvaney-Halpern wire myograph. The relaxant response to endothelium-dependent and endothelium-independent vasodilators was used to assess endothelial dysfunction. RESULTS AND CONCLUSION: Arthritic sheep treated with MPC demonstrated a marked spike in plasma IL-10, 24h following MPC administration. They also showed significantly reduced plasma levels of the inflammatory markers, fibrinogen and serum amyloid A, and increased HDL. Coronary arteries from RA sheep treated with MPCs demonstrated a significantly greater maximal relaxation to bradykinin when compared to untreated RA sheep (253.6 ± 17.1% of pre-contracted tone vs. 182.3 ± 27.3% in controls), and digital arteries also demonstrated greater endothelium-dependent vasodilation. This study demonstrated that MPCs given intravenously are able to attenuate systemic inflammatory changes associated with a monoarthritis, including the development of endothelial dysfunction.