Veterinary Biosciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 17
  • Item
    Thumbnail Image
    Genetic variation within the genus Macropostrongyloides (Nematoda: Strongyloidea) from Australian macropodid and vombatid marsupials
    Sukee, T ; Beveridge, I ; Chilton, NB ; Jabbar, A (CAMBRIDGE UNIV PRESS, 2019-11)
    The genetic variation and taxonomic status of the four morphologically-defined species of Macropostrongyloides in Australian macropodid and vombatid marsupials were examined using sequence data of the ITS+ region (=first and second internal transcribed spacers, and the 5.8S rRNA gene) of the nuclear ribosomal DNA. The results of the phylogenetic analyses revealed that Ma. baylisi was a species complex consisting of four genetically distinct groups, some of which are host-specific. In addition, Ma. lasiorhini in the common wombat (Vombatus ursinus) did not form a monophyletic clade with Ma. lasiorhini from the southern hairy-nosed wombat (Lasiorhinus latifrons), suggesting the possibility of cryptic (genetically distinct but morphologically similar) species. There was also some genetic divergence between Ma. dissimilis in swamp wallabies (Wallabia bicolor) from different geographical regions. In contrast, there was no genetic divergence among specimens of Ma. yamagutii across its broad geographical range or between host species (i.e. Macropus fuliginosus and M. giganteus). Macropostrongyloides dissimilis represented the sister taxon to Ma. baylisi, Ma. yamagutii and Ma. lasiorhini. Further morphological and molecular studies are required to assess the species complex of Ma. baylisi.
  • Item
    Thumbnail Image
    Worm burdens and associated histopathological changes caused by gastrointestinal nematodes in alpacas from Australia
    Rashid, MH ; Beveridge, I ; Vaughan, JL ; Jabbar, A (Springer Verlag, 2019-03-14)
    In this study, 100 gastrointestinal tracts of Australian alpacas were examined to assess the worm burden and to identify the species of nematode present. Faecal samples were collected from 97 alpacas and processed for faecal egg counts (FECs). For identification of the species, both molecular (multiplexed-tandem polymerase chain reaction [MT-PCR]) and morphological techniques were used. Total worm counts (TWCs) revealed a mean burden of 1300 worms, with the highest burden of 29,000 worms. The average egg count was 501 eggs per gram of faeces (EPG), with the highest count of 3500 EPG. Nineteen different species of gastrointestinal nematodes (GINs) were identified, and Graphinema auchenia, Camelostrongylus mentulatus and Trichuris tenuis were recovered from Australian alpacas for the first time. Haemonchus contortus was the most prevalent nematode (81%) followed by C. mentulatus (60%). The majority of the nematodes found are shared with sheep, goats and cattle. Findings of this study provide useful insights into the spectrum of GINs and their burden in Australian alpacas.
  • Item
    Thumbnail Image
    Epidemiology of gastrointestinal nematodes of alpacas in Australia: II. A longitudinal study
    Rashid, MH ; Stevenson, MA ; Vaughan, JL ; Saeed, MA ; Campbell, AJD ; Beveridge, I ; Jabbar, A (SPRINGER, 2019-03)
    We conducted a longitudinal survey on 13 alpaca farms in four climatic zones of Australia to understand the epidemiology of gastrointestinal nematodes (GINs) of alpacas. A total of 1688 fresh faecal samples were collected from both sexes of alpacas from May 2015 to April 2016 and processed for faecal egg counts (FEC) and molecular identification of eggs using the multiplexed-tandem PCR assay. Based on egg morphology, the overall prevalence of GINs was 61% while that for strongyles was 53%. The overall mean FEC was 168 eggs per gram (EPG) of faeces, with the highest count of 15,540 EPG. Weaners had the highest prevalence (73%) and mean FEC (295 EPG) of GINs followed by tuis, crias and adults. Alpacas in the winter rainfall zone had the highest prevalence (68%) as well as FEC (266 EPG) followed by Mediterranean-type, non-seasonal and summer rainfall zones. Trichostrongylus spp. (83%, 89/107), Haemonchus spp. (71%, 76/107) and Camelostrongylus mentulatus (63%, 67/107) were the three most common GINs of alpacas across all climatic zones. The mixed-effects zero-inflated negative binomial regression model used in this study showed that it could help to design parasite control interventions targeted at both the herd level and the individual alpaca level. The findings of this study showed that the epidemiology of GINs of alpacas is very similar to those of cattle and sheep, and careful attention should be paid when designing control strategies for domestic ruminants co-grazing with alpacas.
  • Item
    Thumbnail Image
    Epidemiology of gastrointestinal nematodes of alpacas in Australia: I. A cross-sectional study
    Rashid, MH ; Vaughan, JL ; Stevenson, MA ; Campbell, AJD ; Saeed, MA ; Indjein, L ; Beveridge, I ; Jabbar, A (SPRINGER, 2019-03)
    This study involved a national cross-sectional survey of gastrointestinal nematodes (GINs) of alpacas in Australia. A total of 1545 fresh faecal samples were collected from both sexes of alpacas and processed for faecal egg counts (FEC) and molecular identification of nematodes using the multiplexed tandem PCR assay. Based on egg morphology, the overall prevalence of GINs was 66% while that for strongyles was 59%. The overall mean FEC was 276 eggs per gram (EPG) of faeces, with the highest count of 17,415 EPG. Male alpacas had a higher prevalence (68%, 334/490) as well as mean FEC (328 ± 60 EPG) of GINs than females (63%, 602/954; 227 ± 26, respectively). Weaners had the highest prevalence (80%) whereas tuis had the highest FEC (402 EPG) of nematodes. The highest prevalence (77%, 293/383) and FEC (630 EPG) of GINs were observed in the summer rainfall zone followed by the Mediterranean-type rainfall, non-seasonal rainfall and winter rainfall zones. The characterisation of nematode DNA isolated from faeces revealed the occurrence of seven different GINs, including Camelostrongylus mentulatus, Cooperia spp., Haemonchus spp., Oesophagostomum spp., Ostertagia ostertagi, Teladorsagia circumcincta and Trichostrongylus spp. Besides, Nematodirus spp. and Trichuris spp. were also found during FECs. The prevalence of Haemonchus spp. was highest in the summer rainfall zone while that of C. mentulatus was highest in the Mediterranean-type rainfall, non-seasonal rainfall and winter rainfall zones. The findings of this study revealed that alpacas harbour many of the same nematodes as sheep and cattle.
  • Item
    Thumbnail Image
    An assessment of worm control practices used by alpaca farmers in Australia
    Rashid, MH ; Stevenson, MA ; Campbell, AJD ; Vaughan, JL ; Beveridge, I ; Jabbar, A (ELSEVIER, 2019-01)
    This study aimed to assess current worm control practices used by Australian alpaca farmers with an online questionnaire survey. The questionnaire contained questions about farm demography and general husbandry practices, farmers' knowledge about gastrointestinal nematodes (GINs) and their importance, the use of worm control strategies and anthelmintics, and grazing management. A link for the questionnaire survey was sent to all (n = 954) registered members of the Australian Alpaca Association in July 2015. The response rate for the questionnaire was 25% (239/954). The majority of respondents were from small (≤ 50 alpacas; 64%, 153/239) followed by medium (50-100 alpacas; 24%, 57/239) and large (>100 alpacas; 12%, 29/239) farms. Findings revealed that the majority of respondents kept Huacaya alpacas to produce high-quality fibre and alpacas were usually kept with other domestic ruminants (e.g. cattle and sheep). Although half of alpaca farmers (114/220) perceived that GINs were an important health problem of alpacas, with Haemonchus spp. being the most common nematode, the majority of them (174/220) used anthelmintics for nematode control. Macrocyclic lactones, a commercial combination of four anthelmintics (abamectin, albendazole, closantel and levamisole) and monepantel were the three most commonly used dewormers by Australian alpaca farmers. Although a significant proportion (166/213) of respondents used a quarantine drench for alpacas, very few respondents were aware of strategic deworming and the issue of anthelmintic resistance. Alpaca farmers mostly used anthelmintics at the dose rate recommended for sheep (47%, 79/167) and cattle (9%, 15/167), though some used 1.5 (31%, 51/167) and 2 (13%, 22/167) times the dose rate recommended for sheep. The majority of small herds used anthelmintics at the dose rate recommended for sheep and cattle while medium and large herds used anthelmintics at 1.5 to 2 times the dose rate recommended for sheep. This study provides invaluable insights into the demography of alpaca farms in Australia, husbandry practices used by alpaca farmers and their knowledge about worms and their control, thereby paving the way for developing guidelines for the control of GINs of alpacas.
  • Item
    Thumbnail Image
    Speciation in the genus Cloacina (Nematoda: Strongylida): species flocks and intra-host speciation
    Chilton, NB ; Shuttleworth, MA ; Huby-Chilton, F ; Koehler, AV ; Jabbar, A ; Gasser, RB ; Beveridge, I (CAMBRIDGE UNIV PRESS, 2017-11)
    Sequences of the first and second internal transcribed spacers (ITS1 + ITS2) of nuclear ribosomal DNA were employed to determine whether the congeneric assemblages of species of the strongyloid nematode genus Cloacina, found in the forestomachs of individual species of kangaroos and wallabies (Marsupialia: Macropodidae), considered to represent species flocks, were monophyletic. Nematode assemblages examined in the black-striped wallaby, Macropus (Notamacropus) dorsalis, the wallaroos, Macropus (Osphranter) antilopinus/robustus, rock wallabies, Petrogale spp., the quokka, Setonix brachyurus, and the swamp wallaby, Wallabia bicolor, were not monophyletic and appeared to have arisen by host colonization. However, a number of instances of within-host speciation were detected, suggesting that a variety of methods of speciation have contributed to the evolution of the complex assemblages of species present in this genus.
  • Item
    Thumbnail Image
    Description and molecular characterisation of Cloacina johnstoni sp nov (Nematoda: Strongyloidea) from the wallaroo, Macropus robustus (Marsupialia: Macropodidae) and relationships with the synhospitalic species C-macropodis
    Shuttleworth, M ; Jabbar, A ; Beveridge, I (SPRINGER, 2016-09)
    Cloacina johnstoni sp. nov. (Nematoda: Strongyloidea) is described from the sacculated forestomach of the wallaroo, Macropus robustus (Marsupialia: Macropodidae) from Australia. It resembles the synhospitalic species Cloacina macropodis but differs from it principally in the shape of the cephalic papillae. The two species are also distinguishable based on differences in the first and second internal transcribed spacers (ITS) of nuclear ribosomal DNA (rDNA). Cloacina johnstoni commonly co-occurs in the same individual host as C. macropodis but has a more restricted geographical distribution.
  • Item
    Thumbnail Image
    Morphological and molecular observations on the status of Crassicauda magna, a parasite of the subcutaneous tissues of the pygmy sperm whale, with a re-evaluation of the systematic relationships of the genus Crassicauda
    Jabbar, A ; Beveridge, I ; Bryant, MS (SPRINGER, 2015-03)
    Members of the genus Crassicauda (Nematoda: Spirurida) are parasites of the body tissues of whales and dolphins. Owing to the large size of worms and difficulties in the recovery of entire nematodes from the tissues of hosts, limited information is available on morphological descriptions of both male and female worms. Furthermore, there are currently no available sequence data for this genus to assist with such identifications. This paper describes for the first time features of the anterior extremity and the male tail of Crassicauda magna, suggesting that Crassicauda duguyi may be a synonym of this species. In addition, molecular data are presented for the genus for the first time suggesting that the genus belongs within the superfamily Acuarioidea rather than within the Habronematoidea, in which it is currently placed.
  • Item
    Thumbnail Image
    New species of Cloacina von Linstow, 1898 (Nematoda: Strongyloidea) parasitic in the stomachs of wallaroos, Osphranter spp. (Marsupialia: Macropodidae) from northern Australia
    Beveridge, I ; Jex, A ; Tan, N ; Jabbar, A (SPRINGER, 2018-07)
    Three new species of the parasitic nematode genus Cloacina von Linstow, 1898 (Strongyloidea: Cloacininae) are described from the stomachs of wallaroos, Osphranter spp. (Marsupialia: Macropodidae), from northern Australia. Cloacina spearei n. sp. is described from O. robustus woodwardi (Thomas) and O. antilopinus (Gould) and is distinguished from congeners by the shape of the cephalic papillae, the shallow buccal capsule, the presence of an oesophageal denticle and the convoluted but non-recurrent vagina in the female. Cloacina longibursata n. sp. also from O. robustus woodwardi and O. antilopinus is distinguished from congeners by the elongate dorsal lobe of the bursa, with the origin of the lateral branchlets posterior to the principal bifurcation, in the features of the spicule tip, the lack of bosses lining the oesophagus and the absence of an oesophageal denticle. Cloacina crassicaudata n. sp., from the same two host species was formerly identified as C. cornuta (Davey & Wood, 1938). Differences in the cephalic cuticle (inflation lacking in the new species), the shape of the cephalic papillae, the dorsal oesophageal tooth and the spicule tips, as well as differences in the sequences of the internal transcribed spacers of the nuclear ribosomal DNA, indicate that this is an independent species. The geographical distribution of this species is disjunct with populations in both the Northern Territory and Queensland. Possible reasons for the disjunct distribution are discussed.
  • Item
    Thumbnail Image
    New species of Kiluluma Skrjabin, 1916 (Nematoda: Strongylida) from the white rhinoceros Ceratotherium simium (Burchell), with a redescription of K-solitaria Thapar, 1924
    Beveridge, I ; Jabbar, A (SPRINGER, 2013-06)
    Three species of Kiluluma Skrjabin, 1916 were identified in Ceratotherium simium (Burchell) from a captive population in New South Wales, Australia, based on analysis of the second internal transcribed spacer (ITS-2) of ribosomal DNA. One species was identified as K. solitaria Thapar, 1924 and is redescribed. A second species is new and is described here as K. ceratotherii n. sp. The third species is new but was represented by two individuals only and is described but is not named.