Veterinary Biosciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 6 of 6
  • Item
    Thumbnail Image
    Phylogenetic and Molecular Epidemiological Studies Reveal Evidence of Multiple Past Recombination Events between Infectious Laryngotracheitis Viruses
    Lee, S-W ; Devlin, JM ; Markham, JF ; Noormohammadi, AH ; Browning, GF ; Ficorilli, NP ; Hartley, CA ; Markham, PF ; Poon, AFY (PUBLIC LIBRARY SCIENCE, 2013-02-01)
    In contrast to the RNA viruses, the genome of large DNA viruses such as herpesviruses have been considered to be relatively stable. Intra-specific recombination has been proposed as an important, but underestimated, driving force in herpesvirus evolution. Recently, two distinct field strains of infectious laryngotracheitis virus (ILTV) have been shown to have arisen from independent recombination events between different commercial ILTV vaccines. In this study we sequenced the genomes of additional ILTV strains and also utilized other recently updated complete genome sequences of ILTV to confirm the existence of a number of ILTV recombinants in nature. Multiple recombination events were detected in the unique long and repeat regions of the genome, but not in the unique short region. Most recombinants contained a pair of crossover points between two distinct lineages of ILTV, corresponding to the European origin and the Australian origin vaccine strains of ILTV. These results suggest that there are two distinct genotypic lineages of ILTV and that these commonly recombine in the field.
  • Item
    Thumbnail Image
    First complete genome sequence of infectious laryngotracheitis virus
    Lee, S-W ; Markham, PF ; Markham, JF ; Petermann, I ; Noormohammadi, AH ; Browning, GF ; Ficorilli, NP ; Hartley, CA ; Devlin, JM (BIOMED CENTRAL LTD, 2011-04-19)
    BACKGROUND: Infectious laryngotracheitis virus (ILTV) is an alphaherpesvirus that causes acute respiratory disease in chickens worldwide. To date, only one complete genomic sequence of ILTV has been reported. This sequence was generated by concatenating partial sequences from six different ILTV strains. Thus, the full genomic sequence of a single (individual) strain of ILTV has not been determined previously. This study aimed to use high throughput sequencing technology to determine the complete genomic sequence of a live attenuated vaccine strain of ILTV. RESULTS: The complete genomic sequence of the Serva vaccine strain of ILTV was determined, annotated and compared to the concatenated ILTV reference sequence. The genome size of the Serva strain was 152,628 bp, with a G + C content of 48%. A total of 80 predicted open reading frames were identified. The Serva strain had 96.5% DNA sequence identity with the concatenated ILTV sequence. Notably, the concatenated ILTV sequence was found to lack four large regions of sequence, including 528 bp and 594 bp of sequence in the UL29 and UL36 genes, respectively, and two copies of a 1,563 bp sequence in the repeat regions. Considerable differences in the size of the predicted translation products of 4 other genes (UL54, UL30, UL37 and UL38) were also identified. More than 530 single-nucleotide polymorphisms (SNPs) were identified. Most SNPs were located within three genomic regions, corresponding to sequence from the SA-2 ILTV vaccine strain in the concatenated ILTV sequence. CONCLUSIONS: This is the first complete genomic sequence of an individual ILTV strain. This sequence will facilitate future comparative genomic studies of ILTV by providing an appropriate reference sequence for the sequence analysis of other ILTV strains.
  • Item
    Thumbnail Image
    Differential expression of lipoprotein genes in Mycoplasma pneumoniae after contact with human lung epithelial cells, and under oxidative and acidic stress
    Hallamaa, KM ; Tang, S-L ; Ficorilli, N ; Browning, GF (BMC, 2008-07-23)
    BACKGROUND: Mycoplasma pneumoniae is a human pathogen that is a common cause of community-acquired pneumonia. It harbours a large number of lipoprotein genes, most of which are of unknown function. Because of their location on the cell surface, these proteins are likely to be involved in the bacterial response to environmental changes, or in the initial stages of infection. The aim of this study was to determine if genes encoding surface lipoproteins are differentially expressed after contact with a human cell line, or after exposure to oxidative or acidic stress. RESULTS: Using qRT-PCR assays, we observed that the expression of a number of lipoprotein genes was up-regulated when M. pneumoniae was placed in contact with human cells. In contrast, lipoprotein expression was generally down-regulated or unchanged when exposed to either hydrogen peroxide or low pH (5.5). When exposed to low pH, the mRNA levels of four polycistronically transcribed genes in Lipoprotein Multigene Family 6 formed a gradient of decreasing quantity with increasing distance from a predicted promoter. CONCLUSION: The demonstrated transcriptional changes provide evidence for the functionality of these mostly unassigned genes and indicate that they are regulated in response to changes in environmental conditions. In addition we have shown that the members of Lipoprotein Gene Family 6 may be expressed polycistronically.
  • Item
    Thumbnail Image
    Low genetic diversity among historical and contemporary clinical isolates of felid herpesvirus 1
    Vaz, PK ; Job, N ; Horsington, J ; Ficorilli, N ; Studdert, MJ ; Hartley, CA ; Gilkerson, JR ; Browning, GF ; Devlin, JM (BIOMED CENTRAL LTD, 2016-09-02)
    BACKGROUND: Felid herpesvirus 1 (FHV-1) causes upper respiratory tract diseases in cats worldwide, including nasal and ocular discharge, conjunctivitis and oral ulceration. The nature and severity of disease can vary between clinical cases. Genetic determinants of virulence are likely to contribute to differences in the in vivo phenotype of FHV-1 isolates, but to date there have been limited studies investigating FHV-1 genetic diversity. This study used next generation sequencing to compare the genomes of contemporary Australian clinical isolates of FHV-1, vaccine isolates and historical clinical isolates, including isolates that predated the introduction of live attenuated vaccines into Australia. Analysis of the genome sequences aimed to assess the level of genetic diversity, identify potential genetic markers that could influence the in vivo phenotype of the isolates and examine the sequences for evidence of recombination. RESULTS: The full genome sequences of 26 isolates of FHV-1 were determined, including two vaccine isolates and 24 clinical isolates that were collected over a period of approximately 40 years. Analysis of the genome sequences revealed a remarkably low level of diversity (0.0-0.01 %) between the isolates. No potential genetic determinants of virulence were identified, but unique single nucleotide polymorphisms (SNPs) in the UL28 and UL44 genes were detected in the vaccine isolates that were not present in the clinical isolates. No evidence of FHV-1 recombination was detected using multiple methods of recombination detection, even though many of the isolates originated from cats housed in a shelter environment where high infective pressures were likely to exist. Evidence of displacement of dominant FHV-1 isolates with other (genetically distinct) FHV-1 isolates over time was observed amongst the isolates obtained from the shelter-housed animals. CONCLUSIONS: The results show that FHV-1 genomes are highly conserved. The lack of recombination detected in the FHV-1 genomes suggests that the risk of attenuated vaccines recombining to generate virulent field viruses is lower than has been suggested for some other herpesviruses. The SNPs detected only in the vaccine isolates offer the potential to develop PCR-based methods of differentiating vaccine and clinical isolates of FHV-1 in order to facilitate future epidemiological studies.
  • Item
    Thumbnail Image
    The first genome sequence of a metatherian herpesvirus: Macropodid herpesvirus 1
    Vaz, PK ; Mahony, TJ ; Hartley, CA ; Fowler, EV ; Ficorilli, N ; Lee, SW ; Gilkerson, JR ; Browning, GF ; Devlin, JM (BMC, 2016-01-22)
    BACKGROUND: While many placental herpesvirus genomes have been fully sequenced, the complete genome of a marsupial herpesvirus has not been described. Here we present the first genome sequence of a metatherian herpesvirus, Macropodid herpesvirus 1 (MaHV-1). RESULTS: The MaHV-1 viral genome was sequenced using an Illumina MiSeq sequencer, de novo assembly was performed and the genome was annotated. The MaHV-1 genome was 140 kbp in length and clustered phylogenetically with the primate simplexviruses, sharing 67% nucleotide sequence identity with Human herpesviruses 1 and 2. The MaHV-1 genome contained 66 predicted open reading frames (ORFs) homologous to those in other herpesvirus genomes, but lacked homologues of UL3, UL4, UL56 and glycoprotein J. This is the first alphaherpesvirus genome that has been found to lack the UL3 and UL4 homologues. We identified six novel ORFs and confirmed their transcription by RT-PCR. CONCLUSIONS: This is the first genome sequence of a herpesvirus that infects metatherians, a taxonomically unique mammalian clade. Members of the Simplexvirus genus are remarkably conserved, so the absence of ORFs otherwise retained in eutherian and avian alphaherpesviruses contributes to our understanding of the Alphaherpesvirinae. Further study of metatherian herpesvirus genetics and pathogenesis provides a unique approach to understanding herpesvirus-mammalian interactions.
  • Item
    No Preview Available
    Evidence of widespread natural recombination among field isolates of equine herpesvirus 4 but not among field isolates of equine herpesvirus 1
    Vaz, PK ; Horsington, J ; Hartley, CA ; Browning, GF ; Ficorilli, NP ; Studdert, MJ ; Gilkerson, JR ; Devlin, JM (SOC GENERAL MICROBIOLOGY, 2016-03)
    Recombination in alphaherpesviruses allows evolution to occur in viruses that have an otherwise stable DNA genome with a low rate of nucleotide substitution. High-throughput sequencing of complete viral genomes has recently allowed natural (field) recombination to be studied in a number of different alphaherpesviruses, however, such studies have not been applied to equine herpesvirus 1 (EHV-1) or equine herpesvirus 4 (EHV-4). These two equine alphaherpesviruses are genetically similar, but differ in their pathogenesis and epidemiology. Both cause economically significant disease in horse populations worldwide. This study used high-throughput sequencing to determine the full genome sequences of EHV-1 and EHV-4 isolates (11 and 14 isolates, respectively) from Australian or New Zealand horses. These sequences were then analysed and examined for evidence of recombination. Evidence of widespread recombination was detected in the genomes of the EHV-4 isolates. Only one potential recombination event was detected in the genomes of the EHV-1 isolates, even when the genomes from an additional 11 international EHV-1 isolates were analysed. The results from this study reveal another fundamental difference between the biology of EHV-1 and EHV-4. The results may also be used to help inform the future safe use of attenuated equine herpesvirus vaccines.