Veterinary Biosciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    Thumbnail Image
    Cross-Predicting Essential Genes between Two Model Eukaryotic Species Using Machine Learning
    Campos, TL ; Korhonen, PK ; Young, ND (MDPI, 2021-05)
    Experimental studies of Caenorhabditis elegans and Drosophila melanogaster have contributed substantially to our understanding of molecular and cellular processes in metazoans at large. Since the publication of their genomes, functional genomic investigations have identified genes that are essential or non-essential for survival in each species. Recently, a range of features linked to gene essentiality have been inferred using a machine learning (ML)-based approach, allowing essentiality predictions within a species. Nevertheless, predictions between species are still elusive. Here, we undertake a comprehensive study using ML to discover and validate features of essential genes common to both C. elegans and D. melanogaster. We demonstrate that the cross-species prediction of gene essentiality is possible using a subset of features linked to nucleotide/protein sequences, protein orthology and subcellular localisation, single-cell RNA-seq, and histone methylation markers. Complementary analyses showed that essential genes are enriched for transcription and translation functions and are preferentially located away from heterochromatin regions of C. elegans and D. melanogaster chromosomes. The present work should enable the cross-prediction of essential genes between model and non-model metazoans.
  • Item
    Thumbnail Image
    OGEE v3: Online GEne Essentiality database with increased coverage of organisms and human cell lines
    Gurumayum, S ; Jiang, P ; Hao, X ; Campos, TL ; Young, ND ; Korhonen, PK ; Gasser, RB ; Bork, P ; Zhao, X-M ; He, L-J ; Chen, W-H (OXFORD UNIV PRESS, 2021-01-08)
    OGEE is an Online GEne Essentiality database. Gene essentiality is not a static and binary property, rather a context-dependent and evolvable property in all forms of life. In OGEE we collect not only experimentally tested essential and non-essential genes, but also associated gene properties that contributes to gene essentiality. We tagged conditionally essential genes that show variable essentiality statuses across datasets to highlight complex interplays between gene functions and environmental/experimental perturbations. OGEE v3 contains gene essentiality datasets for 91 species; almost doubled from 48 species in previous version. To accommodate recent advances on human cancer essential genes (as known as tumor dependency genes) that could serve as targets for cancer treatment and/or drug development, we expanded the collection of human essential genes from 16 cell lines in previous to 581. These human cancer cell lines were tested with high-throughput experiments such as CRISPR-Cas9 and RNAi; in total, 150 of which were tested by both techniques. We also included factors known to contribute to gene essentiality for these cell lines, such as genomic mutation, methylation and gene expression, along with extensive graphical visualizations for ease of understanding of these factors. OGEE v3 can be accessible freely at https://v3.ogee.info.
  • Item
    No Preview Available
    Combined use of feature engineering and machine-learning to predict essential genes in Drosophila melanogaster
    Campos, TL ; Korhonen, PK ; Hofmann, A ; Gasser, RB ; Young, ND (OXFORD UNIV PRESS, 2020-09)
    Characterizing genes that are critical for the survival of an organism (i.e. essential) is important to gain a deep understanding of the fundamental cellular and molecular mechanisms that sustain life. Functional genomic investigations of the vinegar fly, Drosophila melanogaster, have unravelled the functions of numerous genes of this model species, but results from phenomic experiments can sometimes be ambiguous. Moreover, the features underlying gene essentiality are poorly understood, posing challenges for computational prediction. Here, we harnessed comprehensive genomic-phenomic datasets publicly available for D. melanogaster and a machine-learning-based workflow to predict essential genes of this fly. We discovered strong predictors of such genes, paving the way for computational predictions of essentiality in less-studied arthropod pests and vectors of infectious diseases.
  • Item
    Thumbnail Image
    Predicting gene essentiality in Caenorhabditis elegans by feature engineering and machine-learning
    Campos, TL ; Korhonen, PK ; Sternberg, PW ; Gasser, RB ; Young, ND (ELSEVIER, 2020)
    Defining genes that are essential for life has major implications for understanding critical biological processes and mechanisms. Although essential genes have been identified and characterised experimentally using functional genomic tools, it is challenging to predict with confidence such genes from molecular and phenomic data sets using computational methods. Using extensive data sets available for the model organism Caenorhabditis elegans, we constructed here a machine-learning (ML)-based workflow for the prediction of essential genes on a genome-wide scale. We identified strong predictors for such genes and showed that trained ML models consistently achieve highly-accurate classifications. Complementary analyses revealed an association between essential genes and chromosomal location. Our findings reveal that essential genes in C. elegans tend to be located in or near the centre of autosomal chromosomes; are positively correlated with low single nucleotide polymorphim (SNP) densities and epigenetic markers in promoter regions; are involved in protein and nucleotide processing; are transcribed in most cells; are enriched in reproductive tissues or are targets for small RNAs bound to the argonaut CSR-1. Based on these results, we hypothesise an interplay between epigenetic markers and small RNA pathways in the germline, with transcription-based memory; this hypothesis warrants testing. From a technical perspective, further work is needed to evaluate whether the present ML-based approach will be applicable to other metazoans (including Drosophila melanogaster) for which comprehensive data sets (i.e. genomic, transcriptomic, proteomic, variomic, epigenetic and phenomic) are available.