Veterinary Biosciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 15
  • Item
    No Preview Available
    Structure-activity relationship and target investigation of 2-aryl quinolines with nematocidal activity
    Shanley, HT ; Taki, AC ; Nguyen, N ; Wang, T ; Byrne, JJ ; Ang, C-S ; Leeming, MG ; Nie, S ; Williamson, N ; Zheng, Y ; Young, ND ; Korhonen, PK ; Hofmann, A ; Chang, BCH ; Wells, TNC ; Haberli, C ; Keiser, J ; Jabbar, A ; Sleebs, BE ; Gasser, RB (ELSEVIER SCI LTD, 2024-04)
    Within the context of our anthelmintic discovery program, we recently identified and evaluated a quinoline derivative, called ABX464 or obefazimod, as a nematocidal candidate; synthesised a series of analogues which were assessed for activity against the free-living nematode Caenorhabditis elegans; and predicted compound-target relationships by thermal proteome profiling (TPP) and in silico docking. Here, we logically extended this work and critically evaluated the anthelmintic activity of ABX464 analogues on Haemonchus contortus (barber's pole worm) - a highly pathogenic nematode of ruminant livestock. First, we tested a series of 44 analogues on H. contortus (larvae and adults) to investigate the nematocidal pharmacophore of ABX464, and identified one compound with greater potency than the parent compound and showed moderate activity against a select number of other parasitic nematodes (including Ancylostoma, Heligmosomoides and Strongyloides species). Using TPP and in silico modelling studies, we predicted protein HCON_00074590 (a predicted aldo-keto reductase) as a target candidate for ABX464 in H. contortus. Future work aims to optimise this compound as a nematocidal candidate and investigate its pharmacokinetic properties. Overall, this study presents a first step toward the development of a new nematocide.
  • Item
    Thumbnail Image
    Thermal proteome profiling reveals Haemonchus orphan protein HCO_011565 as a target of the nematocidal small molecule UMW-868
    Taki, ACC ; Wang, T ; Nguyen, NNN ; Ang, C-S ; Leeming, MGG ; Nie, S ; Byrne, JJJ ; Young, NDD ; Zheng, Y ; Ma, G ; Korhonen, PKK ; Koehler, AVV ; Williamson, NAA ; Hofmann, A ; Chang, BCH ; Haeberli, C ; Keiser, J ; Jabbar, A ; Sleebs, BEE ; Gasser, RBB (FRONTIERS MEDIA SA, 2022-10-14)
    Parasitic roundworms (nematodes) cause destructive diseases, and immense suffering in humans and other animals around the world. The control of these parasites relies heavily on anthelmintic therapy, but treatment failures and resistance to these drugs are widespread. As efforts to develop vaccines against parasitic nematodes have been largely unsuccessful, there is an increased focus on discovering new anthelmintic entities to combat drug resistant worms. Here, we employed thermal proteome profiling (TPP) to explore hit pharmacology and to support optimisation of a hit compound (UMW-868), identified in a high-throughput whole-worm, phenotypic screen. Using advanced structural prediction and docking tools, we inferred an entirely novel, parasite-specific target (HCO_011565) of this anthelmintic small molecule in the highly pathogenic, blood-feeding barber's pole worm, and in other socioeconomically important parasitic nematodes. The "hit-to-target" workflow constructed here provides a unique prospect of accelerating the simultaneous discovery of novel anthelmintics and associated parasite-specific targets.
  • Item
    Thumbnail Image
    Structure-Activity Relationship Studies of Tolfenpyrad Reveal Subnanomolar Inhibitors of Haemonchus contortus Development
    Le, TG ; Kundu, A ; Ghoshal, A ; Nguyen, NH ; Preston, S ; Jiao, Y ; Ruan, B ; Xue, L ; Huang, F ; Keiser, J ; Hofmann, A ; Chang, BCH ; Garcia-Bustos, J ; Wells, TNC ; Palmer, MJ ; Jabbar, A ; Gasser, RB ; Baell, JB (AMER CHEMICAL SOC, 2019-01-24)
    Recently, we have discovered that the registered pesticide, tolfenpyrad, unexpectedly and potently inhibits the development of the L4 larval stage of the parasitic nematode Haemonchus contortus with an IC50 value of 0.03 μM while displaying good selectivity, with an IC50 of 37.9 μM for cytotoxicity. As a promising molecular template for medicinal chemistry optimization, we undertook anthelmintic structure-activity relationships for this chemical. Modifications of the left-hand side (LHS), right-hand side (RHS), and middle section of the scaffold were explored to produce a set of 57 analogues. Analogues 25, 29, and 33 were shown to be the most potent compounds of the series, with IC50 values at a subnanomolar level of potency against the chemotherapeutically relevant fourth larval (L4) stage of H. contortus. Selected compounds from the series also showed promising activity against a panel of other different parasitic nematodes, such as hookworms and whipworms.
  • Item
    Thumbnail Image
    Optimization of Novel 1-Methyl-1H-Pyrazole-5-carboxamides Leads to High Potency Larval Development Inhibitors of the Barber's Pole Worm
    Le, TG ; Kundu, A ; Ghoshal, A ; Nguyen, NH ; Preston, S ; Jiao, Y ; Ruan, B ; Xue, L ; Huang, F ; Keiser, J ; Hofmann, A ; Chang, BCH ; Garcia-Bustos, J ; Jabbar, A ; Wells, TNC ; Palmer, MJ ; Gasser, RB ; Baell, JB (AMER CHEMICAL SOC, 2018-12-13)
    A phenotypic screen of a diverse library of small molecules for inhibition of the development of larvae of the parasitic nematode Haemonchus contortus led to the identification of a 1-methyl-1 H-pyrazole-5-carboxamide derivative with an IC50 of 0.29 μM. Medicinal chemistry optimization targeted modifications on the left-hand side (LHS), middle section, and right-hand side (RHS) of the scaffold in order to elucidate the structure-activity relationship (SAR). Strong SAR allowed for the iterative and directed assembly of a focus set of 64 analogues, from which compound 60 was identified as the most potent compound, inhibiting the development of the fourth larval (L4) stage with an IC50 of 0.01 μM. In contrast, only 18% inhibition of the mammary epithelial cell line MCF10A viability was observed, even at concentrations as high as 50 μM.
  • Item
    Thumbnail Image
    Deguelin exerts potent nematocidal activity via the mitochondrial respiratory chain
    Preston, S ; Korhonen, PK ; Mouchiroud, L ; Cornaglia, M ; McGee, SL ; Young, ND ; Davis, RA ; Crawford, S ; Nowell, C ; Ansell, BRE ; Fisher, GM ; Andrews, KT ; Chang, BCH ; Gijs, MAM ; Sternberg, PW ; Auwerx, J ; Baell, J ; Hofmann, A ; Jabbar, A ; Gasser, RB (WILEY, 2017-10)
    As a result of limited classes of anthelmintics and an over-reliance on chemical control, there is a great need to discover new compounds to combat drug resistance in parasitic nematodes. Here, we show that deguelin, a plant-derived rotenoid, selectively and potently inhibits the motility and development of nematodes, which supports its potential as a lead candidate for drug development. Furthermore, we demonstrate that deguelin treatment significantly increases gene transcription that is associated with energy metabolism, particularly oxidative phosphorylation and mitoribosomal protein production before inhibiting motility. Mitochondrial tracking confirmed enhanced oxidative phosphorylation. In accordance, real-time measurements of oxidative phosphorylation in response to deguelin treatment demonstrated an immediate decrease in oxygen consumption in both parasitic (Haemonchus contortus) and free-living (Caenorhabditis elegans) nematodes. Consequently, we hypothesize that deguelin is exerting its toxic effect on nematodes as a modulator of oxidative phosphorylation. This study highlights the dynamic biologic response of multicellular organisms to deguelin perturbation.-Preston, S., Korhonen, P. K., Mouchiroud, L., Cornaglia, M., McGee, S. L., Young, N. D., Davis, R. A., Crawford, S., Nowell, C., Ansell, B. R. E., Fisher, G. M., Andrews, K. T., Chang, B. C. H., Gijs, M. A. M., Sternberg, P. W., Auwerx, J., Baell, J., Hofmann, A., Jabbar, A., Gasser, R. B. Deguelin exerts potent nematocidal activity via the mitochondrial respiratory chain.
  • Item
    Thumbnail Image
    Screening of a small, well-curated natural product-based library identifies two rotenoids with potent nematocidal activity against Haemonchus contortus
    Herath, HMPD ; Preston, S ; Hofmann, A ; Davis, RA ; Koehler, AV ; Chang, BCH ; Jabbar, A ; Gasser, RB (ELSEVIER SCIENCE BV, 2017-09-15)
    The control of parasitic roundworms (nematodes) is heavily reliant on the use of a limited number of anthelmintic drugs. However, drug resistance is now very widespread and no vaccines are available, such that the discovery of new chemical entities is crucial. Within this context, we screened a library of pure natural products (n=400) against exsheathed third-stage (xL3) larvae of the parasitic nematode Haemonchus contortus using a whole-organism screening method. We identified two plant-derived rotenoids, deguelin and rotenone, with inhibitory activity on xL3 motility. Rotenone was not investigated further, because of its toxicity to some vertebrates. The dose response and cytotoxicity studies showed potent and selective inhibitory activity of deguelin on motility of xL3 larvae of H. contortus. Detailed future work needs to be conducted to explore the mode of action of this compound on H. contortus and related nematodes, and to assess its potential as an anthelmintic candidate.
  • Item
    Thumbnail Image
    Chromosome-scale Echinococcus granulosus (genotype G1) genome reveals the Eg95 gene family and conservation of the EG95-vaccine molecule
    Korhonen, PK ; Kinkar, L ; Young, ND ; Cai, H ; Lightowlers, MW ; Gauci, C ; Jabbar, A ; Chang, BCH ; Wang, T ; Hofmann, A ; Koehler, A ; Li, J ; Li, J ; Wang, D ; Yin, J ; Yang, H ; Jenkins, DJ ; Saarma, U ; Laurimae, T ; Rostami-Nejad, M ; Irshadullah, M ; Mirhendi, H ; Sharbatkhori, M ; Ponce-Gordo, F ; Simsek, S ; Casulli, A ; Zait, H ; Atoyan, H ; de la Rue, ML ; Romig, T ; Wassermann, M ; Aghayan, SA ; Gevorgyan, H ; Yang, B ; Gasser, RB (NATURE PORTFOLIO, 2022-03-03)
    Cystic echinococcosis is a socioeconomically important parasitic disease caused by the larval stage of the canid tapeworm Echinococcus granulosus, afflicting millions of humans and animals worldwide. The development of a vaccine (called EG95) has been the most notable translational advance in the fight against this disease in animals. However, almost nothing is known about the genomic organisation/location of the family of genes encoding EG95 and related molecules, the extent of their conservation or their functions. The lack of a complete reference genome for E. granulosus genotype G1 has been a major obstacle to addressing these areas. Here, we assembled a chromosomal-scale genome for this genotype by scaffolding to a high quality genome for the congener E. multilocularis, localised Eg95 gene family members in this genome, and evaluated the conservation of the EG95 vaccine molecule. These results have marked implications for future explorations of aspects such as developmentally-regulated gene transcription/expression (using replicate samples) for all E. granulosus stages; structural and functional roles of non-coding genome regions; molecular 'cross-talk' between oncosphere and the immune system; and defining the precise function(s) of EG95. Applied aspects should include developing improved tools for the diagnosis and chemotherapy of cystic echinococcosis of humans.
  • Item
    Thumbnail Image
    High Throughput Screening of the NatureBank 'Marine Collection' in a Haemonchus Bioassay Identifies Anthelmintic Activity in Extracts from a Range of Sponges from Australian Waters
    Taki, AC ; Byrne, JJ ; Jabbar, A ; Lum, KY ; Hayes, S ; Addison, RS ; Ramage, KS ; Hofmann, A ; Ekins, MG ; Wang, T ; Chang, BCH ; Davis, RA ; Gasser, RB (MDPI, 2021-10)
    Widespread resistance in parasitic nematodes to most classes of anthelmintic drugs demands the discovery and development of novel compounds with distinct mechanisms of action to complement strategic or integrated parasite control programs. Products from nature-which assume a diverse 'chemical space'-have significant potential as a source of anthelmintic compounds. In the present study, we screened a collection of extracts (n = 7616) derived from marine invertebrates sampled from Australian waters in a high throughput bioassay for in vitro anti-parasitic activity against the barber's pole worm (Haemonchus contortus)-an economically important parasitic nematode of livestock animals. In this high throughput screen (HTS), we identified 58 active extracts that reduced larval motility by ≥70% (at 90 h), equating to an overall 'hit rate' of ~0.8%. Of these 58 extracts, 16 also inhibited larval development by ≥80% (at 168 h) and/or induced 'non-wild-type' (abnormal) larval phenotypes with reference to 'wild-type' (normal) larvae not exposed to extract (negative controls). Most active extracts (54 of 58) originated from sponges, three from chordates (tunicates) and one from a coral; these extracts represented 37 distinct species/taxa of 23 families. An analysis of samples by 1H NMR fingerprinting was utilised to dereplicate hits and to prioritise a set of 29 sponge samples for future chemical investigation. Overall, these results indicate that a range of sponge species from Australian waters represents a rich source of natural compounds with nematocidal or nematostatic properties. Our plan now is to focus on in-depth chemical investigations of the sample set prioritised herein.
  • Item
    Thumbnail Image
    Arylpyrrole and fipronil analogues that inhibit the motility and/or development of Haemonchus contortus in vitro.
    Dilrukshi Herath, HMP ; Song, H ; Preston, S ; Jabbar, A ; Wang, T ; McGee, SL ; Hofmann, A ; Garcia-Bustos, J ; Chang, BCH ; Koehler, AV ; Liu, Y ; Ma, Q ; Zhang, P ; Zhao, Q ; Wang, Q ; Gasser, RB (Elsevier BV, 2018-12)
    Due to widespread drug resistance in parasitic nematodes, there is a need to develop new anthelmintics. Given the cost and time involved in developing a new drug, the repurposing of known chemicals can be a promising, alternative approach. In this context, we tested a library (n = 600) of natural product-inspired pesticide analogues against exsheathed third stage-larvae (xL3s) of Haemonchus contortus (barber's pole worm) using a whole-organism, phenotypic screening technique that measures the inhibition of motility and development in treated larvae. In the primary screen, we identified 32 active analogues derived from chemical scaffolds of arylpyrrole or fipronil. The seven most promising compounds, selected based on their anthelmintic activity and/or limited cytotoxicity, are arylpyrroles that reduced the motility of fourth-stage larvae (L4s) with significant potency (IC50 values ranged from 0.04 ± 0.01 μM to 4.25 ± 0.82 μM, and selectivity indices ranged from 10.6 to 412.5). Since the parent structures of the active compounds are uncouplers of oxidative phosphorylation, we tested the effect of selected analogues on oxygen consumption in xL3s using the Seahorse XF24 flux analyser. Larvae treated with the test compounds showed a significant increase in oxygen consumption compared with the untreated control, demonstrating their uncoupling activity. Overall, the results of the present study have identified natural product-derived molecules that are worth considering for chemical optimisation as anthelmintic drug leads.
  • Item
    Thumbnail Image
    Tetrahydroquinoxalines induce a lethal evisceration phenotype in Haemonchus contortus in vitro
    Jiao, Y ; Preston, S ; Garcia-Bustos, JF ; Baell, JB ; Ventura, S ; Le, T ; McNamara, N ; Nguyen, N ; Botteon, A ; Skinner, C ; Danne, J ; Ellis, S ; Koehler, A ; Wang, T ; Chang, BCH ; Hofmann, A ; Jabbar, A ; Gasser, RB (ELSEVIER SCI LTD, 2019-04)
    In the present study, the anthelmintic activity of a human tyrosine kinase inhibitor, AG-1295, and 14 related tetrahydroquinoxaline analogues against Haemonchus contortus was explored. These compounds were screened against parasitic larvae - exsheathed third-stage (xL3) and fourth-stage (L4) - using a whole-organism screening assay. All compounds were shown to have inhibitory effects on larval motility, development and growth, and induced evisceration through the excretory pore in xL3s. The estimated IC50 values ranged from 3.5 to 52.0 μM for inhibition of larval motility or development. Cytotoxicity IC50 against human MCF10A cells was generally higher than 50 μM. Microscopic studies revealed that this eviscerated (Evi) phenotype occurs rapidly (<20 min) and relates to a protrusion of internal tissues and organs (evisceration) through the excretory pore in xL3s; severe pathological damage in L4s as well as a suppression of larval growth in both stages were also observed. Using a relatively low concentration (12.5 μM) of compound m10, it was established that the inhibitor has to be present for a relatively short time (between 30 h and 42 h) during in vitro development from xL3 to L4, to induce the Evi phenotype. Increasing external osmotic pressure prevented evisceration and moulting, and xL3s remained unaffected by the test compound. These results point to a mode of action involving a dysregulation of morphogenetic processes during a critical time-frame, in agreement with the expected behaviour of a tyrosine kinase inhibitor, and suggest potential for development of this compound class as nematocidal drugs.