Veterinary Biosciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    Thumbnail Image
    Performance Evaluation and Validation of Air Samplers To Detect Aerosolized Coxiella burnetii
    Abeykoon, AMH ; Poon, M ; Firestone, SM ; Stevenson, MA ; Wiethoelter, AK ; Vincent, GA ; Uzal, F (AMER SOC MICROBIOLOGY, 2022-10-26)
    Coxiella burnetii, the etiological agent of Q fever, is an intracellular zoonotic pathogen transmitted via the respiratory route. Once released from infected animals, C. burnetii can travel long distances through air before infecting another host. As such, the ability to detect the presence of C. burnetii in air is important. In this study, three air samplers, AirPort MD8, BioSampler, and the Coriolis Micro, were assessed against a set of predetermined criteria in the presence of three different aerosolized C. burnetii concentrations. Two liquid collection media, phosphate-buffered saline (PBS) and alkaline polyethylene glycol (Alk PEG), were tested with devices requiring a collection liquid. Samples were tested by quantitative polymerase chain reaction assay (qPCR) targeting the single-copy com1 gene or multicopy insertion element IS1111. All air samplers performed well at detecting airborne C. burnetii across the range of concentrations tested. At high nebulized concentrations, AirPort MD8 showed higher, but variable, recovery probabilities. While the BioSampler and Coriolis Micro recovered C. burnetii at lower concentrations, the replicates were far more repeatable. At low and intermediate nebulized concentrations, results were comparable in the trials between air samplers, although the AirPort MD8 had consistently higher recovery probabilities. In this first study validating air samplers for their ability to detect aerosolized C. burnetii, we found that while all samplers performed well, not all samplers were equal. It is important that these results are further validated under field conditions. These findings will further inform efforts to detect airborne C. burnetii around known point sources of infection. IMPORTANCE Coxiella burnetii causes Q fever in humans and coxiellosis in animals. It is important to know if C. burnetii is present in the air around putative sources as it is transmitted via inhalation. This study assessed air samplers (AirPort MD8, BioSampler, and Coriolis Micro) for their efficacy in detecting C. burnetii. Our results show that all three devices could detect aerosolized bacteria effectively; however, at high concentrations the AirPort performed better than the other two devices, showing higher percent recovery. At intermediate and low concentrations AirPort detected at a level higher than or similar to that of other samplers. Quantification of samples was hindered by the limit of quantitation of the qPCR assay. Compared with the other two devices, the AirPort was easier to handle and clean in the field. Testing air around likely sources (e.g., farms, abattoirs, and livestock saleyards) using validated sampling devices will help better estimate the risk of Q fever to nearby communities.
  • Item
    Thumbnail Image
    A cross-sectional survey of risk factors for the presence of Coxiella burnetii in Australian commercial dairy goat farms
    Hou, KW ; Wiethoelter, AK ; Stevenson, MA ; Soares Magalhaes, RJ ; Lignereux, L ; Caraguel, C ; Stenos, J ; Vincent, G ; Aleri, JW ; Firestone, SM (WILEY, 2022-07)
    The largest Australian farm-based outbreak of Q fever originated from a dairy goat herd. We surveyed commercial dairy goat farms across Australia by testing bulk tank milk (BTM) samples using a commercial indirect enzyme-linked immunosorbent assay and two quantitative polymerase chain reactions (PCRs). Of the 66 commercial dairy goat herds on record, managers from 61 herds were contacted and 49 provided BTM samples. Five of the surveyed herds were positive on at least one of the diagnostic tests, thus herd-level apparent prevalence was 10% (95% confidence interval [CI] 4 to 22). True prevalence was estimated to be 3% (95% credible interval: 0 to 18). Herd managers completed a questionnaire on herd management, biosecurity and hygiene practices and risk factors were investigated using multivariable logistic regression. Herds with >900 milking does (the upper quartile) were more likely to be Coxiella burnetii positive (odds ratio = 6.75; 95% CI 1.65 to 27.7) compared with farms with ≤900 milking does. The odds of BTM positivity increased by a factor of 2.53 (95% CI 1.51 to 4.22) for each order of magnitude increase in the number of goats per acre. C. burnetii was not detected in samples from the majority of the Australian dairy goat herds suggesting there is an opportunity to protect the industry and contain this disease with strengthened biosecurity practices. Intensification appeared associated with an increased risk of positivity. Further investigation is required to discriminate the practices associated with an increased risk of introduction to disease-free herds, from practices associated with maintenance of C. burnetii infection in infected dairy goat herds.
  • Item
    Thumbnail Image
    Identifying scenarios and risk factors for Q fever outbreaks using qualitative analysis of expert opinion
    Tan, TS-E ; Hernandez-Jover, M ; Hayes, LM ; Wiethoelter, AK ; Firestone, SM ; Stevenson, MA ; Heller, J (WILEY, 2022-06)
    Q fever is an important zoonotic disease perceived to be an occupational hazard for those working with livestock. Outbreaks involving large numbers of people are uncommon, but the increasing case incidence coupled with changing environmental and industry conditions that promote transmission of Q fever has raised concerns that large and serious outbreaks could become more frequent. The aim of this study was to use expert opinion to better understand how large Q fever outbreaks might occur in an Australian context and to document factors believed to be drivers of disease transmission. Focus groups were conducted with human and animal health professionals across several Australian states. All discussions were recorded, transcribed verbatim and imported into NVIVO for thematic analysis. Four anthropogenic risk factors (disease awareness, industry practices, land use, human behaviour) and three ecological risk factors (physical environment, agent dissemination, animal hosts) emerged from the data. Analysis of expert opinions pointed to the existence of numerous scenarios in which Q fever outbreaks could occur, many of which depict acquisition in the wider community outside of traditional at-risk occupations. This perception of the expansion of Q fever from occupational-acquisition to community-acquisition is driven by greater overarching economic, political and socio-cultural influences that govern the way in which people live and work. Findings from this study highlight that outbreaks are complex phenomena that involve the convergence of diverse elements, not just that of the pathogen and host, but also the physical, political and socioeconomic environments in which they interact. A review of the approaches to prevent and manage Q fever outbreaks will require a multisectorial approach and strengthening of community education, communication and engagement so that all stakeholders become an integrated part of outbreak mitigation and response.
  • Item
    Thumbnail Image
    Coxiella burnetii in the environment: A systematic review and critical appraisal of sampling methods
    Abeykoon, AMH ; Clark, NJ ; Soares Magalhaes, RJ ; Vincent, GA ; Stevenson, MA ; Firestone, SM ; Wiethoelter, AK (WILEY, 2021-05)
    Q fever is a zoonotic disease caused by the intracellular bacterium, Coxiella burnetii. Its primary mode of transmission is by inhalation of aerosols originating from infected animals and contaminated environments. The organism has a very low infective dose, can persist in the environment for long periods of time and large outbreaks fuelled by windborne spread have been previously reported. Detection of C. burnetii in the environment is therefore important during human and animal outbreak investigations and for the control and prevention of Q fever. This study aimed to systematically review and critically appraise the published literature on sampling methods used to detect C. burnetii from different environmental samples. A search of four electronic databases with subsequent hand searching identified 47 eligible articles published since 1935. These articles described sampling of dust, air, soil and liquids in attempts to detect C. burnetii during 19 Q fever outbreaks and in 28 endemic settings. Environmental positivity was most commonly associated with ruminant livestock populations. Evidence describing spatio-temporal characteristics and associated geographical dispersion gradients was limited. The most commonly tested sample type was dust which also yielded the highest bacterial loads of >108 bacteria/cloth. The MD8 (Sartorius) air sampler was used widely for air sampling. Soil was the only sample type for which a validated laboratory protocol was established specifically for C. burnetii. Each environmental sample type has its advantages and limitations which are discussed in detail and a simplified framework to guide decisions around environmental sampling for C. burnetii is provided. In any type of environmental sampling, it is recommended to use standardized and validated methods and to match the most ideal sampling strategy and timing with the research context. These conditions are essential to be considered when designing future Q fever management plans that involve environmental sampling for C. burnetii.