Veterinary Biosciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 8 of 8
  • Item
    Thumbnail Image
    Screening of a small, well-curated natural product-based library identifies two rotenoids with potent nematocidal activity against Haemonchus contortus
    Herath, HMPD ; Preston, S ; Hofmann, A ; Davis, RA ; Koehler, AV ; Chang, BCH ; Jabbar, A ; Gasser, RB (ELSEVIER SCIENCE BV, 2017-09-15)
    The control of parasitic roundworms (nematodes) is heavily reliant on the use of a limited number of anthelmintic drugs. However, drug resistance is now very widespread and no vaccines are available, such that the discovery of new chemical entities is crucial. Within this context, we screened a library of pure natural products (n=400) against exsheathed third-stage (xL3) larvae of the parasitic nematode Haemonchus contortus using a whole-organism screening method. We identified two plant-derived rotenoids, deguelin and rotenone, with inhibitory activity on xL3 motility. Rotenone was not investigated further, because of its toxicity to some vertebrates. The dose response and cytotoxicity studies showed potent and selective inhibitory activity of deguelin on motility of xL3 larvae of H. contortus. Detailed future work needs to be conducted to explore the mode of action of this compound on H. contortus and related nematodes, and to assess its potential as an anthelmintic candidate.
  • Item
    Thumbnail Image
    Arylpyrrole and fipronil analogues that inhibit the motility and/or development of Haemonchus contortus in vitro.
    Dilrukshi Herath, HMP ; Song, H ; Preston, S ; Jabbar, A ; Wang, T ; McGee, SL ; Hofmann, A ; Garcia-Bustos, J ; Chang, BCH ; Koehler, AV ; Liu, Y ; Ma, Q ; Zhang, P ; Zhao, Q ; Wang, Q ; Gasser, RB (Elsevier BV, 2018-12)
    Due to widespread drug resistance in parasitic nematodes, there is a need to develop new anthelmintics. Given the cost and time involved in developing a new drug, the repurposing of known chemicals can be a promising, alternative approach. In this context, we tested a library (n = 600) of natural product-inspired pesticide analogues against exsheathed third stage-larvae (xL3s) of Haemonchus contortus (barber's pole worm) using a whole-organism, phenotypic screening technique that measures the inhibition of motility and development in treated larvae. In the primary screen, we identified 32 active analogues derived from chemical scaffolds of arylpyrrole or fipronil. The seven most promising compounds, selected based on their anthelmintic activity and/or limited cytotoxicity, are arylpyrroles that reduced the motility of fourth-stage larvae (L4s) with significant potency (IC50 values ranged from 0.04 ± 0.01 μM to 4.25 ± 0.82 μM, and selectivity indices ranged from 10.6 to 412.5). Since the parent structures of the active compounds are uncouplers of oxidative phosphorylation, we tested the effect of selected analogues on oxygen consumption in xL3s using the Seahorse XF24 flux analyser. Larvae treated with the test compounds showed a significant increase in oxygen consumption compared with the untreated control, demonstrating their uncoupling activity. Overall, the results of the present study have identified natural product-derived molecules that are worth considering for chemical optimisation as anthelmintic drug leads.
  • Item
    Thumbnail Image
    Screening of the 'Open Scaffolds' collection from Compounds Australia identifies a new chemical entity with anthelmintic activities against different developmental stages of the barber's pole worm and other parasitic nematodes
    Preston, S ; Jiao, Y ; Baell, JB ; Keiser, J ; Crawford, S ; Koehler, AV ; Wang, T ; Simpson, MM ; Kaplan, RM ; Cowley, KJ ; Simpson, KJ ; Hofmann, A ; Jabbar, A ; Gasser, RB (ELSEVIER SCI LTD, 2017-12)
    The discovery and development of novel anthelmintic classes is essential to sustain the control of socioeconomically important parasitic worms of humans and animals. With the aim of offering novel, lead-like scaffolds for drug discovery, Compounds Australia released the 'Open Scaffolds' collection containing 33,999 compounds, with extensive information available on the physicochemical properties of these chemicals. In the present study, we screened 14,464 prioritised compounds from the 'Open Scaffolds' collection against the exsheathed third-stage larvae (xL3s) of Haemonchus contortus using recently developed whole-organism screening assays. We identified a hit compound, called SN00797439, which was shown to reproducibly reduce xL3 motility by ≥ 70%; this compound induced a characteristic, "coiled" xL3 phenotype (IC50 = 3.46-5.93 μM), inhibited motility of fourth-stage larvae (L4s; IC50 = 0.31-12.5 μM) and caused considerable cuticular damage to L4s in vitro. When tested on other parasitic nematodes in vitro, SN00797439 was shown to inhibit (IC50 = 3-50 μM) adults of Ancylostoma ceylanicum (hookworm) and first-stage larvae of Trichuris muris (whipworm) and eventually kill (>90%) these stages. Furthermore, this compound completely inhibited the motility of female and male adults of Brugia malayi (50-100 μM) as well as microfilariae of both B. malayi and Dirofilaria immitis (heartworm). Overall, these results show that SN00797439 acts against genetically (evolutionarily) distant parasitic nematodes i.e. H. contortus and A. ceylanicum [strongyloids] vs. B. malayi and D. immitis [filarioids] vs. T. muris [enoplid], and, thus, might offer a novel, lead-like scaffold for the development of a relatively broad-spectrum anthelmintic. Our future work will focus on assessing the activity of SN00797439 against other pathogens that cause neglected tropical diseases, optimising analogs with improved biological activities and characterising their targets.
  • Item
    Thumbnail Image
    Tetrahydroquinoxalines induce a lethal evisceration phenotype in Haemonchus contortus in vitro
    Jiao, Y ; Preston, S ; Garcia-Bustos, JF ; Baell, JB ; Ventura, S ; Le, T ; McNamara, N ; Nguyen, N ; Botteon, A ; Skinner, C ; Danne, J ; Ellis, S ; Koehler, A ; Wang, T ; Chang, BCH ; Hofmann, A ; Jabbar, A ; Gasser, RB (ELSEVIER SCI LTD, 2019-04)
    In the present study, the anthelmintic activity of a human tyrosine kinase inhibitor, AG-1295, and 14 related tetrahydroquinoxaline analogues against Haemonchus contortus was explored. These compounds were screened against parasitic larvae - exsheathed third-stage (xL3) and fourth-stage (L4) - using a whole-organism screening assay. All compounds were shown to have inhibitory effects on larval motility, development and growth, and induced evisceration through the excretory pore in xL3s. The estimated IC50 values ranged from 3.5 to 52.0 μM for inhibition of larval motility or development. Cytotoxicity IC50 against human MCF10A cells was generally higher than 50 μM. Microscopic studies revealed that this eviscerated (Evi) phenotype occurs rapidly (<20 min) and relates to a protrusion of internal tissues and organs (evisceration) through the excretory pore in xL3s; severe pathological damage in L4s as well as a suppression of larval growth in both stages were also observed. Using a relatively low concentration (12.5 μM) of compound m10, it was established that the inhibitor has to be present for a relatively short time (between 30 h and 42 h) during in vitro development from xL3 to L4, to induce the Evi phenotype. Increasing external osmotic pressure prevented evisceration and moulting, and xL3s remained unaffected by the test compound. These results point to a mode of action involving a dysregulation of morphogenetic processes during a critical time-frame, in agreement with the expected behaviour of a tyrosine kinase inhibitor, and suggest potential for development of this compound class as nematocidal drugs.
  • Item
    Thumbnail Image
    Arylpyrrole and fipronil analogues that inhibit the motility and/or development of Haemonchus conforms in vitro
    Herath, HMPD ; Song, H ; Preston, S ; Jabbar, A ; Wang, T ; McGee, SL ; Hofmann, A ; Garcia-Bustos, J ; Chang, BCH ; Koehler, AV ; Liu, Y ; Ma, Q ; Zhang, P ; Zhao, Q ; Wang, Q ; Gasser, RB (Elsevier Inc., 2018-12-01)
    Due to widespread drug resistance in parasitic nematodes, there is a need to develop new anthelmintics. Given the cost and time involved in developing a new drug, the repurposing of known chemicals can be a promising, alternative approach. In this context, we tested a library (n=600) of natural product-inspired pesticide analogues against exsheathed third stage-larvae (xL3s) of Haemonchus contortus (barber's pole worm) using a wholeorganism, phenotypic screening technique that measures the inhibition of motility and development in treated larvae. In the primary screen, we identified 32 active analogues derived from chemical scaffolds of arylpyrrole or fipronil. The seven most promising compounds, selected based on their anthelmintic activity and/or limited cytotoxicity, are arylpyrroles that reduced the motility of fourth-stage larvae (L4s) with significant potency (IC50 values ranged from 0.04 ± 0.01 μM to 4.25 ± 0.82 μM, and selectivity indices ranged from 10.6 to 412.5). Since the parent structures of the active compounds are uncouplers of oxidative phosphorylation, we tested the effect of selected analogues on oxygen consumption in xL3s using the Seahorse XF24 flux analyser. Larvae treated with the test compounds showed a significant increase in oxygen consumption compared with the untreated control, demonstrating their uncoupling activity. Overall, the results of the present study have identified natural product-derived molecules that are worth considering for chemical optimisation as anthelmintic drug leads.
  • Item
    Thumbnail Image
    Selected α-pyrones from the plants Cryptocarya novoguineensis (Lauraceae) and Piper methysticum (Piperaceae) with activity against Haemonchus contortus in vitro
    Herath, HMPD ; Preston, S ; Jabbar, A ; Garcia-Bustos, J ; Addison, RS ; Hayes, S ; Rali, T ; Wang, T ; Koehler, A ; Chang, BCH ; Hofmann, A ; Davis, RA ; Gasser, RB (ELSEVIER SCI LTD, 2019-04)
    Due to the widespread occurrence and spread of anthelmintic resistance, there is a need to develop new drugs against resistant parasitic nematodes of livestock animals. The Nobel Prize-winning discovery and development of the anti-parasitic drugs avermectin and artemisinin has renewed the interest in exploring natural products as anthelmintics. In the present study, we screened 7500 plant extracts for in vitro-activity against the barber's pole worm, Haemonchus contortus, a highly significant pathogen of ruminants. The anthelmintic extracts from two plants, Cryptocarya novoguineensis and Piper methysticum, were fractionated by high-performance liquid chromatography (HPLC). Subsequently, compounds were purified from fractions with significant biological activity. Four α-pyrones, namely goniothalamin (GNT), dihydrokavain (DHK), desmethoxyyangonin (DMY) and yangonin (YGN), were purified from fractions from the two plants, GNT from C. novoguineensis, and DHK, DMY and YGN (= kavalactones) from P. methysticum. The three kavalactones induced a lethal, eviscerated (Evi) phenotype in treated exsheathed third-stage larvae (xL3s), and DMY and YGN had moderate potencies (IC50 values of 31.7 ± 0.23 μM and 23.7 ± 2.05 μM, respectively) at inhibiting the development of xL3s to fourth-stage larvae (L4s). Although GNT had limited potency (IC50 of 200-300 μM) at inhibiting L4 development, it was the only compound that reduced L4 motility (IC50 of 6.25-12.50 μM). The compounds purified from each plant affected H. contortus in an irreversible manner. These findings suggest that structure-activity relationship studies of α-pyrones should be pursued to assess their potential as anthelmintics.
  • Item
    Thumbnail Image
    Assessing the anthelmintic activity of pyrazole-5-carboxamide derivatives against Haemonchus contortus
    Jiao, Y ; Preston, S ; Song, H ; Jabbar, A ; Liu, Y ; Baell, J ; Hofmann, A ; Hutchinson, D ; Wang, T ; Koehler, AV ; Fisher, GM ; Andrews, KT ; Laleu, B ; Palmer, MJ ; Burrows, JN ; Wells, TNC ; Wang, Q ; Gasser, RB (BIOMED CENTRAL LTD, 2017-05-31)
    BACKGROUND: In this study, we tested five series of pyrazole-5-carboxamide compounds (n = 55) for activity against parasitic stages of the nematode Haemonchus contortus (barber's pole worm), one of the most pathogenic parasites of ruminants. METHODS: In an optimised, whole-organism screening assay, using exsheathed third-stage (xL3) and fourth-stage (L4) larvae, we measured the inhibition of larval motility and development of H. contortus. RESULTS: Amongst the 55 compounds, we identified two compounds (designated a-15 and a-17) that reproducibly inhibit xL3 motility as well as L4 motility and development, with IC50 values ranging between ~3.4 and 55.6 μM. We studied the effect of these two 'hit' compounds on mitochondrial function by measuring oxygen consumption. This assessment showed that xL3s exposed to each of these compounds consumed significantly less oxygen and had less mitochondrial activity than untreated xL3s, which was consistent with specific inhibition of complex I of the respiratory electron transport chain in arthropods. CONCLUSIONS: The present findings provide a sound basis for future work, aimed at identifying the targets of compounds a-15 and a-17 and establishing the modes of action of these chemicals in H. contortus.
  • Item
    Thumbnail Image
    The complement of family M1 aminopeptidases of Haemonchus contortus - Biotechnological implications
    Mohandas, N ; Young, ND ; Jabbar, A ; Korhonen, PK ; Koehler, AV ; Hall, RS ; Hu, M ; Hofmann, A ; Gasser, RB (PERGAMON-ELSEVIER SCIENCE LTD, 2016)
    Although substantial research has been focused on the 'hidden antigen' H11 of Haemonchus contortus as a vaccine against haemonchosis in small ruminants, little is know about this and related aminopeptidases. In the present article, we reviewed genomic and transcriptomic data sets to define, for the first time, the complement of aminopeptidases (designated Hc-AP-1 to Hc-AP-13) of the family M1 with homologues in Caenorhabditis elegans, characterised by zinc-binding (HEXXH) and exo-peptidase (GAMEN) motifs. The three previously published H11 isoforms (accession nos. X94187, FJ481146 and AJ249941) had most sequence similarity to Hc-AP-2 and Hc-AP-8, whereas unpublished isoforms (accession nos. AJ249942 and AJ311316) were both most similar to Hc-AP-3. The aminopeptidases characterised here had homologues in C. elegans. Hc-AP-1 to Hc-AP-8 were most similar in amino acid sequence (28-41%) to C. elegans T07F10.1; Hc-AP-9 and Hc-AP-10 to C. elegans PAM-1 (isoform b) (53-54% similar); Hc-AP-11 and Hc-AP-12 to C. elegans AC3.5 and Y67D8C.9 (26% and 50% similar, respectively); and Hc-AP-13 to C. elegans C42C1.11 and ZC416.6 (50-58% similar). Comparative analysis suggested that Hc-AP-1 to Hc-AP-8 play roles in digestion, metabolite excretion, neuropeptide processing and/or osmotic regulation, with Hc-AP-4 and Hc-AP-7 having male-specific functional roles. The analysis also indicated that Hc-AP-9 and Hc-AP-10 might be involved in the degradation of cyclin (B3) and required to complete meiosis. Hc-AP-11 represents a leucyl/cystinyl aminopeptidase, predicted to have metallopeptidase and zinc ion binding activity, whereas Hc-AP-12 likely encodes an aminopeptidase Q homologue also with these activities and a possible role in gonad function. Finally, Hc-AP-13 is predicted to encode an aminopeptidase AP-1 homologue of C. elegans with hydrolase activity, suggested to operate, possibly synergistically with a PEPT-1 ortholog, as an oligopeptide transporter in the gut for protein uptake and normal development and/or reproduction of the worm. An appraisal of structure-based amino acid sequence alignments revealed that all conceptually translated Hc-AP proteins, with the exception of Hc-AP-12, adopt a topology similar to those observed for the two subgroups of mammalian M1 aminopeptidases, which possess either three (I, II and IV) or four (I-IV) domains. In contrast, Hc-AP-12 lacks the N-terminal domain (I), but possesses a substantially expanded domain III. Although further work needs to be done to assess amino acid sequence conservation of the different aminopeptidases among individual worms within and among H. contortus populations, we hope that these insights will support future localisation, structural and functional studies of these molecules in H. contortus as well as facilitate future assessments of a recombinant subunit or cocktail vaccine against haemonchosis.