Veterinary Biosciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 18
  • Item
    Thumbnail Image
    Thermal proteome profiling reveals Haemonchus orphan protein HCO_011565 as a target of the nematocidal small molecule UMW-868
    Taki, ACC ; Wang, T ; Nguyen, NNN ; Ang, C-S ; Leeming, MGG ; Nie, S ; Byrne, JJJ ; Young, NDD ; Zheng, Y ; Ma, G ; Korhonen, PKK ; Koehler, AVV ; Williamson, NAA ; Hofmann, A ; Chang, BCH ; Haeberli, C ; Keiser, J ; Jabbar, A ; Sleebs, BEE ; Gasser, RBB (FRONTIERS MEDIA SA, 2022-10-14)
    Parasitic roundworms (nematodes) cause destructive diseases, and immense suffering in humans and other animals around the world. The control of these parasites relies heavily on anthelmintic therapy, but treatment failures and resistance to these drugs are widespread. As efforts to develop vaccines against parasitic nematodes have been largely unsuccessful, there is an increased focus on discovering new anthelmintic entities to combat drug resistant worms. Here, we employed thermal proteome profiling (TPP) to explore hit pharmacology and to support optimisation of a hit compound (UMW-868), identified in a high-throughput whole-worm, phenotypic screen. Using advanced structural prediction and docking tools, we inferred an entirely novel, parasite-specific target (HCO_011565) of this anthelmintic small molecule in the highly pathogenic, blood-feeding barber's pole worm, and in other socioeconomically important parasitic nematodes. The "hit-to-target" workflow constructed here provides a unique prospect of accelerating the simultaneous discovery of novel anthelmintics and associated parasite-specific targets.
  • Item
    Thumbnail Image
    Deguelin exerts potent nematocidal activity via the mitochondrial respiratory chain
    Preston, S ; Korhonen, PK ; Mouchiroud, L ; Cornaglia, M ; McGee, SL ; Young, ND ; Davis, RA ; Crawford, S ; Nowell, C ; Ansell, BRE ; Fisher, GM ; Andrews, KT ; Chang, BCH ; Gijs, MAM ; Sternberg, PW ; Auwerx, J ; Baell, J ; Hofmann, A ; Jabbar, A ; Gasser, RB (WILEY, 2017-10)
    As a result of limited classes of anthelmintics and an over-reliance on chemical control, there is a great need to discover new compounds to combat drug resistance in parasitic nematodes. Here, we show that deguelin, a plant-derived rotenoid, selectively and potently inhibits the motility and development of nematodes, which supports its potential as a lead candidate for drug development. Furthermore, we demonstrate that deguelin treatment significantly increases gene transcription that is associated with energy metabolism, particularly oxidative phosphorylation and mitoribosomal protein production before inhibiting motility. Mitochondrial tracking confirmed enhanced oxidative phosphorylation. In accordance, real-time measurements of oxidative phosphorylation in response to deguelin treatment demonstrated an immediate decrease in oxygen consumption in both parasitic (Haemonchus contortus) and free-living (Caenorhabditis elegans) nematodes. Consequently, we hypothesize that deguelin is exerting its toxic effect on nematodes as a modulator of oxidative phosphorylation. This study highlights the dynamic biologic response of multicellular organisms to deguelin perturbation.-Preston, S., Korhonen, P. K., Mouchiroud, L., Cornaglia, M., McGee, S. L., Young, N. D., Davis, R. A., Crawford, S., Nowell, C., Ansell, B. R. E., Fisher, G. M., Andrews, K. T., Chang, B. C. H., Gijs, M. A. M., Sternberg, P. W., Auwerx, J., Baell, J., Hofmann, A., Jabbar, A., Gasser, R. B. Deguelin exerts potent nematocidal activity via the mitochondrial respiratory chain.
  • Item
    Thumbnail Image
    Chromosome-scale Echinococcus granulosus (genotype G1) genome reveals the Eg95 gene family and conservation of the EG95-vaccine molecule
    Korhonen, PK ; Kinkar, L ; Young, ND ; Cai, H ; Lightowlers, MW ; Gauci, C ; Jabbar, A ; Chang, BCH ; Wang, T ; Hofmann, A ; Koehler, A ; Li, J ; Li, J ; Wang, D ; Yin, J ; Yang, H ; Jenkins, DJ ; Saarma, U ; Laurimae, T ; Rostami-Nejad, M ; Irshadullah, M ; Mirhendi, H ; Sharbatkhori, M ; Ponce-Gordo, F ; Simsek, S ; Casulli, A ; Zait, H ; Atoyan, H ; de la Rue, ML ; Romig, T ; Wassermann, M ; Aghayan, SA ; Gevorgyan, H ; Yang, B ; Gasser, RB (NATURE PORTFOLIO, 2022-03-03)
    Cystic echinococcosis is a socioeconomically important parasitic disease caused by the larval stage of the canid tapeworm Echinococcus granulosus, afflicting millions of humans and animals worldwide. The development of a vaccine (called EG95) has been the most notable translational advance in the fight against this disease in animals. However, almost nothing is known about the genomic organisation/location of the family of genes encoding EG95 and related molecules, the extent of their conservation or their functions. The lack of a complete reference genome for E. granulosus genotype G1 has been a major obstacle to addressing these areas. Here, we assembled a chromosomal-scale genome for this genotype by scaffolding to a high quality genome for the congener E. multilocularis, localised Eg95 gene family members in this genome, and evaluated the conservation of the EG95 vaccine molecule. These results have marked implications for future explorations of aspects such as developmentally-regulated gene transcription/expression (using replicate samples) for all E. granulosus stages; structural and functional roles of non-coding genome regions; molecular 'cross-talk' between oncosphere and the immune system; and defining the precise function(s) of EG95. Applied aspects should include developing improved tools for the diagnosis and chemotherapy of cystic echinococcosis of humans.
  • Item
    No Preview Available
    Harnessing model organism genomics to underpin the machine learning-based prediction of essential genes in eukaryotes-Biotechnological implications
    Campos, TL ; Korhonen, PK ; Hofmann, A ; Gasser, RB ; Young, ND (PERGAMON-ELSEVIER SCIENCE LTD, 2022)
    The availability of high-quality genomes and advances in functional genomics have enabled large-scale studies of essential genes in model eukaryotes, including the 'elegant worm' (Caenorhabditis elegans; Nematoda) and the 'vinegar fly' (Drosophila melanogaster; Arthropoda). However, this is not the case for other, much less-studied organisms, such as socioeconomically important parasites, for which functional genomic platforms usually do not exist. Thus, there is a need to develop innovative techniques or approaches for the prediction, identification and investigation of essential genes. A key approach that could enable the prediction of such genes is machine learning (ML). Here, we undertake an historical review of experimental and computational approaches employed for the characterisation of essential genes in eukaryotes, with a particular focus on model ecdysozoans (C. elegans and D. melanogaster), and discuss the possible applicability of ML-approaches to organisms such as socioeconomically important parasites. We highlight some recent results showing that high-performance ML, combined with feature engineering, allows a reliable prediction of essential genes from extensive, publicly available 'omic data sets, with major potential to prioritise such genes (with statistical confidence) for subsequent functional genomic validation. These findings could 'open the door' to fundamental and applied research areas. Evidence of some commonality in the essential gene-complement between these two organisms indicates that an ML-engineering approach could find broader applicability to ecdysozoans such as parasitic nematodes or arthropods, provided that suitably large and informative data sets become/are available for proper feature engineering, and for the robust training and validation of algorithms. This area warrants detailed exploration to, for example, facilitate the identification and characterisation of essential molecules as novel targets for drugs and vaccines against parasitic diseases. This focus is particularly important, given the substantial impact that such diseases have worldwide, and the current challenges associated with their prevention and control and with drug resistance in parasite populations.
  • Item
    No Preview Available
    Elucidating the molecular and developmental biology of parasitic nematodes: Moving to a multiomics paradigm
    Ma, G ; Wang, T ; Korhonen, PK ; Hofmann, A ; Sternberg, PW ; Young, ND ; Gasser, RB ; Rollinson, D ; Stothard, R (ACADEMIC PRESS LTD-ELSEVIER SCIENCE LTD, 2020-01-01)
    In the past two decades, significant progress has been made in the sequencing, assembly, annotation and analyses of genomes and transcriptomes of parasitic worms of socioeconomic importance. This progress has somewhat improved our knowledge and understanding of these pathogens at the molecular level. However, compared with the free-living nematode Caenorhabditis elegans, the areas of functional genomics, transcriptomics, proteomics and metabolomics of parasitic nematodes are still in their infancy, and there are major gaps in our knowledge and understanding of the molecular biology of parasitic nematodes. The information on signalling molecules, molecular pathways and microRNAs (miRNAs) that are known to be involved in developmental processes in C. elegans and the availability of some molecular resources (draft genomes, transcriptomes and some proteomes) for selected parasitic nematodes provide a basis to start exploring the developmental biology of parasitic nematodes. Indeed, some studies have identified molecules and pathways that might associate with developmental processes in related, parasitic nematodes, such as Haemonchus contortus (barber's pole worm). However, detailed information is often scant and ‘omics resources are limited, preventing a proper integration of ‘omic data sets and comprehensive analyses. Moreover, little is known about the functional roles of pheromones, hormones, signalling pathways and post-transcriptional/post-translational regulations in the development of key parasitic nematodes throughout their entire life cycles. Although C. elegans is an excellent model to assist molecular studies of parasitic nematodes, its use is limited when it comes to explorations of processes that are specific to parasitism within host animals. A deep understanding of parasitic nematodes, such as H. contortus, requires substantially enhanced resources and the use of integrative ‘omics approaches for analyses. The improved genome and well-established in vitro larval culture system for H. contortus provide unprecedented opportunities for comprehensive studies of the transcriptomes (mRNA and miRNA), proteomes (somatic, excretory/secretory and phosphorylated proteins) and lipidomes (e.g., polar and neutral lipids) of this nematode. Such resources should enable in-depth explorations of its developmental biology at a level, not previously possible. The main aims of this review are (i) to provide a background on the development of nematodes, with a particular emphasis on the molecular aspects involved in the dauer formation and exit in C. elegans; (ii) to critically appraise the current state of knowledge of the developmental biology of parasitic nematodes and identify key knowledge gaps; (iii) to cover salient aspects of H. contortus, with a focus on the recent advances in genomics, transcriptomics, proteomics and lipidomics as well as in vitro culturing systems; (iv) to review recent advances in our knowledge and understanding of the molecular and developmental biology of H. contortus using an integrative multiomics approach, and discuss the implications of this approach for detailed explorations of signalling molecules, molecular processes and pathways likely associated with nematode development, adaptation and parasitism, and for the identification of novel intervention targets against these pathogens. Clearly, the multiomics approach established recently is readily applicable to exploring a wide range of interesting and socioeconomically significant parasitic worms (including also trematodes and cestodes) at the molecular level, and to elucidate host–parasite interactions and disease processes.
  • Item
    No Preview Available
    The genome and developmental transcriptome of the strongylid nematode Haemonchus contortus
    Schwarz, EM ; Korhonen, PK ; Campbell, BE ; Young, ND ; Jex, AR ; Jabbar, A ; Hall, RS ; Mondal, A ; Howe, AC ; Pell, J ; Hofmann, A ; Boag, PR ; Zhu, X-Q ; Gregory, TR ; Loukas, A ; Williams, BA ; Antoshechkin, I ; Brown, CT ; Sternberg, PW ; Gasser, RB (BMC, 2013)
    BACKGROUND: The barber's pole worm, Haemonchus contortus, is one of the most economically important parasites of small ruminants worldwide. Although this parasite can be controlled using anthelmintic drugs, resistance against most drugs in common use has become a widespread problem. We provide a draft of the genome and the transcriptomes of all key developmental stages of H. contortus to support biological and biotechnological research areas of this and related parasites. RESULTS: The draft genome of H. contortus is 320 Mb in size and encodes 23,610 protein-coding genes. On a fundamental level, we elucidate transcriptional alterations taking place throughout the life cycle, characterize the parasite's gene silencing machinery, and explore molecules involved in development, reproduction, host-parasite interactions, immunity, and disease. The secretome of H. contortus is particularly rich in peptidases linked to blood-feeding activity and interactions with host tissues, and a diverse array of molecules is involved in complex immune responses. On an applied level, we predict drug targets and identify vaccine molecules. CONCLUSIONS: The draft genome and developmental transcriptome of H. contortus provide a major resource to the scientific community for a wide range of genomic, genetic, proteomic, metabolomic, evolutionary, biological, ecological, and epidemiological investigations, and a solid foundation for biotechnological outcomes, including new anthelmintics, vaccines and diagnostic tests. This first draft genome of any strongylid nematode paves the way for a rapid acceleration in our understanding of a wide range of socioeconomically important parasites of one of the largest nematode orders.
  • Item
    Thumbnail Image
    The Opisthorchis viverrini genome provides insights into life in the bile duct
    Young, ND ; Nagarajan, N ; Lin, SJ ; Korhonen, PK ; Jex, AR ; Hall, RS ; Safavi-Hemami, H ; Kaewkong, W ; Bertrand, D ; Gao, S ; Seet, Q ; Wongkham, S ; Teh, BT ; Wongkham, C ; Intapan, PM ; Maleewong, W ; Yang, X ; Hu, M ; Wang, Z ; Hofmann, A ; Sternberg, PW ; Tan, P ; Wang, J ; Gasser, RB (NATURE PUBLISHING GROUP, 2014-07)
    Opisthorchiasis is a neglected, tropical disease caused by the carcinogenic Asian liver fluke, Opisthorchis viverrini. This hepatobiliary disease is linked to malignant cancer (cholangiocarcinoma, CCA) and affects millions of people in Asia. No vaccine is available, and only one drug (praziquantel) is used against the parasite. Little is known about O. viverrini biology and the diseases that it causes. Here we characterize the draft genome (634.5 Mb) and transcriptomes of O. viverrini, elucidate how this fluke survives in the hostile environment within the bile duct and show that metabolic pathways in the parasite are highly adapted to a lipid-rich diet from bile and/or cholangiocytes. We also provide additional evidence that O. viverrini and other flukes secrete proteins that directly modulate host cell proliferation. Our molecular resources now underpin profound explorations of opisthorchiasis/CCA and the design of new interventions.
  • Item
    Thumbnail Image
    Genetic blueprint of the zoonotic pathogen Toxocara canis
    Zhu, X-Q ; Korhonen, PK ; Cai, H ; Young, ND ; Nejsum, P ; von Samson-Himmelstjerna, G ; Boag, PR ; Tan, P ; Li, Q ; Min, J ; Yang, Y ; Wang, X ; Fang, X ; Hall, RS ; Hofmann, A ; Sternberg, PW ; Jex, AR ; Gasser, RB (NATURE RESEARCH, 2015-02)
    Toxocara canis is a zoonotic parasite of major socioeconomic importance worldwide. In humans, this nematode causes disease (toxocariasis) mainly in the under-privileged communities in developed and developing countries. Although relatively well studied from clinical and epidemiological perspectives, to date, there has been no global investigation of the molecular biology of this parasite. Here we use next-generation sequencing to produce a draft genome and transcriptome of T. canis to support future biological and biotechnological investigations. This genome is 317 Mb in size, has a repeat content of 13.5% and encodes at least 18,596 protein-coding genes. We study transcription in a larval, as well as adult female and male stages, characterize the parasite's gene-silencing machinery, explore molecules involved in development or host-parasite interactions and predict intervention targets. The draft genome of T. canis should provide a useful resource for future molecular studies of this and other, related parasites.
  • Item
    Thumbnail Image
    Exploring molecular variation in Schistosoma japonicum in China
    Young, ND ; Chan, K-G ; Korhonen, PK ; Chong, TM ; Ee, R ; Mohandas, N ; Koehler, AV ; Lim, Y-L ; Hofmann, A ; Jex, AR ; Qian, B ; Chilton, NB ; Gobert, GN ; McManus, DP ; Tan, P ; Webster, BL ; Rollinson, D ; Gasser, RB (NATURE PORTFOLIO, 2015-12-01)
    Schistosomiasis is a neglected tropical disease that affects more than 200 million people worldwide. The main disease-causing agents, Schistosoma japonicum, S. mansoni and S. haematobium, are blood flukes that have complex life cycles involving a snail intermediate host. In Asia, S. japonicum causes hepatointestinal disease (schistosomiasis japonica) and is challenging to control due to a broad distribution of its snail hosts and range of animal reservoir hosts. In China, extensive efforts have been underway to control this parasite, but genetic variability in S. japonicum populations could represent an obstacle to eliminating schistosomiasis japonica. Although a draft genome sequence is available for S. japonicum, there has been no previous study of molecular variation in this parasite on a genome-wide scale. In this study, we conducted the first deep genomic exploration of seven S. japonicum populations from mainland China, constructed phylogenies using mitochondrial and nuclear genomic data sets, and established considerable variation between some of the populations in genes inferred to be linked to key cellular processes and/or pathogen-host interactions. Based on the findings from this study, we propose that verifying intraspecific conservation in vaccine or drug target candidates is an important first step toward developing effective vaccines and chemotherapies against schistosomiasis.
  • Item
    Thumbnail Image
    The Haemonchus contortus kinome - a resource for fundamental molecular investigations and drug discovery
    Stroehlein, AJ ; Young, ND ; Korhonen, PK ; Jabbar, A ; Hofmann, A ; Sternberg, PW ; Gasser, RB (BMC, 2015-12-08)
    BACKGROUND: Protein kinases regulate a plethora of essential signalling and other biological pathways in all eukaryotic organisms, but very little is known about them in most parasitic nematodes. METHODS: Here, we defined, for the first time, the entire complement of protein kinases (kinome) encoded in the barber's pole worm (Haemonchus contortus) through an integrated analysis of transcriptomic and genomic datasets using an advanced bioinformatic workflow. RESULTS: We identified, curated and classified 432 kinases representing ten groups, 103 distinct families and 98 subfamilies. A comparison of the kinomes of H. contortus and Caenorhabditis elegans (a related, free-living nematode) revealed considerable variation in the numbers of casein kinases, tyrosine kinases and Ca(2+)/calmodulin-dependent protein kinases, which likely relate to differences in biology, habitat and life cycle between these worms. Moreover, a suite of kinase genes was selectively transcribed in particular developmental stages of H. contortus, indicating central roles in developmental and reproductive processes. In addition, using a ranking system, drug targets (n = 13) and associated small-molecule effectors (n = 1517) were inferred. CONCLUSIONS: The H. contortus kinome will provide a useful resource for fundamental investigations of kinases and signalling pathways in this nematode, and should assist future anthelmintic discovery efforts; this is particularly important, given current drug resistance problems in parasitic nematodes.