Veterinary Biosciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    Thumbnail Image
    The complement of family M1 aminopeptidases of Haemonchus contortus - Biotechnological implications
    Mohandas, N ; Young, ND ; Jabbar, A ; Korhonen, PK ; Koehler, AV ; Hall, RS ; Hu, M ; Hofmann, A ; Gasser, RB (PERGAMON-ELSEVIER SCIENCE LTD, 2016)
    Although substantial research has been focused on the 'hidden antigen' H11 of Haemonchus contortus as a vaccine against haemonchosis in small ruminants, little is know about this and related aminopeptidases. In the present article, we reviewed genomic and transcriptomic data sets to define, for the first time, the complement of aminopeptidases (designated Hc-AP-1 to Hc-AP-13) of the family M1 with homologues in Caenorhabditis elegans, characterised by zinc-binding (HEXXH) and exo-peptidase (GAMEN) motifs. The three previously published H11 isoforms (accession nos. X94187, FJ481146 and AJ249941) had most sequence similarity to Hc-AP-2 and Hc-AP-8, whereas unpublished isoforms (accession nos. AJ249942 and AJ311316) were both most similar to Hc-AP-3. The aminopeptidases characterised here had homologues in C. elegans. Hc-AP-1 to Hc-AP-8 were most similar in amino acid sequence (28-41%) to C. elegans T07F10.1; Hc-AP-9 and Hc-AP-10 to C. elegans PAM-1 (isoform b) (53-54% similar); Hc-AP-11 and Hc-AP-12 to C. elegans AC3.5 and Y67D8C.9 (26% and 50% similar, respectively); and Hc-AP-13 to C. elegans C42C1.11 and ZC416.6 (50-58% similar). Comparative analysis suggested that Hc-AP-1 to Hc-AP-8 play roles in digestion, metabolite excretion, neuropeptide processing and/or osmotic regulation, with Hc-AP-4 and Hc-AP-7 having male-specific functional roles. The analysis also indicated that Hc-AP-9 and Hc-AP-10 might be involved in the degradation of cyclin (B3) and required to complete meiosis. Hc-AP-11 represents a leucyl/cystinyl aminopeptidase, predicted to have metallopeptidase and zinc ion binding activity, whereas Hc-AP-12 likely encodes an aminopeptidase Q homologue also with these activities and a possible role in gonad function. Finally, Hc-AP-13 is predicted to encode an aminopeptidase AP-1 homologue of C. elegans with hydrolase activity, suggested to operate, possibly synergistically with a PEPT-1 ortholog, as an oligopeptide transporter in the gut for protein uptake and normal development and/or reproduction of the worm. An appraisal of structure-based amino acid sequence alignments revealed that all conceptually translated Hc-AP proteins, with the exception of Hc-AP-12, adopt a topology similar to those observed for the two subgroups of mammalian M1 aminopeptidases, which possess either three (I, II and IV) or four (I-IV) domains. In contrast, Hc-AP-12 lacks the N-terminal domain (I), but possesses a substantially expanded domain III. Although further work needs to be done to assess amino acid sequence conservation of the different aminopeptidases among individual worms within and among H. contortus populations, we hope that these insights will support future localisation, structural and functional studies of these molecules in H. contortus as well as facilitate future assessments of a recombinant subunit or cocktail vaccine against haemonchosis.
  • Item
    Thumbnail Image
    Phylogenomic and biogeographic reconstruction of the Trichinella complex
    Korhonen, PK ; Pozio, E ; La Rosa, G ; Chang, BCH ; Koehler, AV ; Hoberg, EP ; Boag, PR ; Tan, P ; Jex, AR ; Hofmann, A ; Sternberg, PW ; Young, ND ; Gasser, RB (NATURE PUBLISHING GROUP, 2016-02)
    Trichinellosis is a globally important food-borne parasitic disease of humans caused by roundworms of the Trichinella complex. Extensive biological diversity is reflected in substantial ecological and genetic variability within and among Trichinella taxa, and major controversy surrounds the systematics of this complex. Here we report the sequencing and assembly of 16 draft genomes representing all 12 recognized Trichinella species and genotypes, define protein-coding gene sets and assess genetic differences among these taxa. Using thousands of shared single-copy orthologous gene sequences, we fully reconstruct, for the first time, a phylogeny and biogeography for the Trichinella complex, and show that encapsulated and non-encapsulated Trichinella taxa diverged from their most recent common ancestor āˆ¼21 million years ago (mya), with taxon diversifications commencing āˆ¼10-7ā€‰mya.
  • Item
    Thumbnail Image
    CAP protein superfamily members in Toxocara canis
    Stroehlein, AJ ; Young, ND ; Hall, RS ; Korhonen, PK ; Hofmann, A ; Sternberg, PW ; Jabbar, A ; Gasser, RB (BMC, 2016-06-24)
    BACKGROUND: Proteins of the cysteine-rich secretory proteins, antigen 5 and pathogenesis-related 1 (CAP) superfamily are recognized or proposed to play roles in parasite development and reproduction, and in modulating host immune attack and infection processes. However, little is known about these proteins for most parasites. RESULTS: In the present study, we explored CAP proteins of Toxocara canis, a socioeconomically important zoonotic roundworm. To do this, we mined and curated transcriptomic and genomic data, predicted and curated full-length protein sequences (nā€‰=ā€‰28), conducted analyses of these data and studied the transcription of respective genes in different developmental stages of T. canis. In addition, based on information available for Caenorhabditis elegans, we inferred that selected genes (including lon-1, vap-1, vap-2, scl-1, scl-8 and scl-11 orthologs) of T. canis and their interaction partners likely play central roles in this parasite's development and/or reproduction via TGF-beta and/or insulin-like signaling pathways, or via host interactions. CONCLUSION: In conclusion, this study could provide a foundation to guide future studies of CAP proteins of T. canis and related parasites, and might assist in finding new interventions against diseases caused by these parasites.