Veterinary Biosciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 7 of 7
  • Item
    No Preview Available
    Elucidating the molecular and developmental biology of parasitic nematodes: Moving to a multiomics paradigm
    Ma, G ; Wang, T ; Korhonen, PK ; Hofmann, A ; Sternberg, PW ; Young, ND ; Gasser, RB ; Rollinson, D ; Stothard, R (ACADEMIC PRESS LTD-ELSEVIER SCIENCE LTD, 2020-01-01)
    In the past two decades, significant progress has been made in the sequencing, assembly, annotation and analyses of genomes and transcriptomes of parasitic worms of socioeconomic importance. This progress has somewhat improved our knowledge and understanding of these pathogens at the molecular level. However, compared with the free-living nematode Caenorhabditis elegans, the areas of functional genomics, transcriptomics, proteomics and metabolomics of parasitic nematodes are still in their infancy, and there are major gaps in our knowledge and understanding of the molecular biology of parasitic nematodes. The information on signalling molecules, molecular pathways and microRNAs (miRNAs) that are known to be involved in developmental processes in C. elegans and the availability of some molecular resources (draft genomes, transcriptomes and some proteomes) for selected parasitic nematodes provide a basis to start exploring the developmental biology of parasitic nematodes. Indeed, some studies have identified molecules and pathways that might associate with developmental processes in related, parasitic nematodes, such as Haemonchus contortus (barber's pole worm). However, detailed information is often scant and ‘omics resources are limited, preventing a proper integration of ‘omic data sets and comprehensive analyses. Moreover, little is known about the functional roles of pheromones, hormones, signalling pathways and post-transcriptional/post-translational regulations in the development of key parasitic nematodes throughout their entire life cycles. Although C. elegans is an excellent model to assist molecular studies of parasitic nematodes, its use is limited when it comes to explorations of processes that are specific to parasitism within host animals. A deep understanding of parasitic nematodes, such as H. contortus, requires substantially enhanced resources and the use of integrative ‘omics approaches for analyses. The improved genome and well-established in vitro larval culture system for H. contortus provide unprecedented opportunities for comprehensive studies of the transcriptomes (mRNA and miRNA), proteomes (somatic, excretory/secretory and phosphorylated proteins) and lipidomes (e.g., polar and neutral lipids) of this nematode. Such resources should enable in-depth explorations of its developmental biology at a level, not previously possible. The main aims of this review are (i) to provide a background on the development of nematodes, with a particular emphasis on the molecular aspects involved in the dauer formation and exit in C. elegans; (ii) to critically appraise the current state of knowledge of the developmental biology of parasitic nematodes and identify key knowledge gaps; (iii) to cover salient aspects of H. contortus, with a focus on the recent advances in genomics, transcriptomics, proteomics and lipidomics as well as in vitro culturing systems; (iv) to review recent advances in our knowledge and understanding of the molecular and developmental biology of H. contortus using an integrative multiomics approach, and discuss the implications of this approach for detailed explorations of signalling molecules, molecular processes and pathways likely associated with nematode development, adaptation and parasitism, and for the identification of novel intervention targets against these pathogens. Clearly, the multiomics approach established recently is readily applicable to exploring a wide range of interesting and socioeconomically significant parasitic worms (including also trematodes and cestodes) at the molecular level, and to elucidate host–parasite interactions and disease processes.
  • Item
    Thumbnail Image
    Quantitative lipidomic analysis of Ascaris suum
    Wang, T ; Nie, S ; Ma, G ; Vlaminck, J ; Geldhof, P ; Williamson, NA ; Reid, GE ; Gasser, RB ; Cappello, M (PUBLIC LIBRARY SCIENCE, 2020-12-01)
    Ascaris is a soil-transmitted nematode that causes ascariasis, a neglected tropical disease affecting predominantly children and adolescents in the tropics and subtropics. Approximately 0.8 billion people are affected worldwide, equating to 0.86 million disability-adjusted life-years (DALYs). Exploring the molecular biology of Ascaris is important to gain a better understanding of the host-parasite interactions and disease processes, and supports the development of novel interventions. Although advances have been made in the genomics, transcriptomics and proteomics of Ascaris, its lipidome has received very limited attention. Lipidomics is an important sub-discipline of systems biology, focused on exploring lipids profiles in tissues and cells, and elucidating their biological and metabolic roles. Here, we characterised the lipidomes of key developmental stages and organ systems of Ascaris of porcine origin via high throughput LC-MS/MS. In total, > 500 lipid species belonging to 18 lipid classes within three lipid categories were identified and quantified–in precise molar amounts in relation to the dry weight of worm material–in different developmental stages/sexes and organ systems. The results showed substantial differences in the composition and abundance of lipids with key roles in cellular processes and functions (e.g. energy storage regulation and membrane structure) among distinct stages and among organ systems, likely reflecting differing demands for lipids, depending on stage of growth and development as well as the need to adapt to constantly changing environments within and outside of the host animal. This work provides the first step toward understanding the biology of lipids in Ascaris, with possibilities to work toward designing new interventions against ascariasis.
  • Item
    Thumbnail Image
    High-quality nuclear genome for Sarcoptes scabiei-A critical resource for a neglected parasite
    Korhonen, PK ; Gasser, RB ; Ma, G ; Wang, T ; Stroehlein, AJ ; Young, ND ; Ang, C-S ; Fernando, DD ; Lu, HC ; Taylor, S ; Reynolds, SL ; Mofiz, E ; Najaraj, SH ; Gowda, H ; Madugundu, A ; Renuse, S ; Holt, D ; Pandey, A ; Papenfuss, AT ; Fischer, K ; Ramos, AN (PUBLIC LIBRARY SCIENCE, 2020-10-01)
    The parasitic mite Sarcoptes scabiei is an economically highly significant parasite of the skin of humans and animals worldwide. In humans, this mite causes a neglected tropical disease (NTD), called scabies. This disease results in major morbidity, disability, stigma and poverty globally and is often associated with secondary bacterial infections. Currently, anti-scabies treatments are not sufficiently effective, resistance to them is emerging and no vaccine is available. Here, we report the first high-quality genome and transcriptomic data for S. scabiei. The genome is 56.6 Mb in size, has a a repeat content of 10.6% and codes for 9,174 proteins. We explored key molecules involved in development, reproduction, host-parasite interactions, immunity and disease. The enhanced ‘omic data sets for S. scabiei represent comprehensive and critical resources for genetic, functional genomic, metabolomic, phylogenetic, ecological and/or epidemiological investigations, and will underpin the design and development of new treatments, vaccines and/or diagnostic tests.
  • Item
    Thumbnail Image
    Synthetic Kavalactone Analogues with Increased Potency and Selective Anthelmintic Activity against Larvae of Haemonchus contortus In Vitro
    Herath, HMPD ; Taki, AC ; Nghi, N ; Garcia-Bustos, J ; Hofmann, A ; Wang, T ; Ma, G ; Chang, BCH ; Jabbar, A ; Sleebs, BE ; Gasser, RB (MDPI, 2020-04-02)
    Kava extract, an aqueous rhizome emulsion of the plant Piper methysticum, has been used for centuries by Pacific Islanders as a ceremonial beverage, and has been sold as an anxiolytic agent for some decades. Kavalactones are a major constituent of kava extract. In a previous investigation, we had identified three kavalactones that inhibit larval development of Haemonchus contortus in an in vitro-bioassay. In the present study, we synthesized two kavalactones, desmethoxyyangonin and yangonin, as well as 17 analogues thereof, and evaluated their anthelmintic activities using the same bioassay as employed previously. Structure activity relationship (SAR) studies showed that a 4-substituent on the pendant aryl ring was required for activity. In particular, compounds with 4-trifluoromethoxy, 4-difluoromethoxy, 4-phenoxy, and 4-N-morpholine substitutions had anthelmintic activities (IC50 values in the range of 1.9 to 8.9 µM) that were greater than either of the parent natural products-desmethoxyyangonin (IC50 of 37.1 µM) and yangonin (IC50 of 15.0 µM). The synthesized analogues did not exhibit toxicity on HepG2 human hepatoma cells in vitro at concentrations of up to 40 µM. These findings confirm the previously-identified kavalactone scaffold as a promising chemotype for new anthelmintics and provide a basis for a detailed SAR investigation focused on developing a novel anthelmintic agent.
  • Item
    Thumbnail Image
    Natural Compounds from the Marine Brown Alga Caulocystis cephalornithos with Potent In Vitro-Activity against the Parasitic Nematode Haemonchus contortus
    Taki, AC ; Brkljaca, R ; Wang, T ; Koehler, A ; Ma, G ; Danne, J ; Ellis, S ; Hofmann, A ; Chang, BCH ; Jabbar, A ; Urban, S ; Gasser, RB (MDPI, 2020-07)
    Eight secondary metabolites (1 to 8) were isolated from a marine sponge, a marine alga and three terrestrial plants collected in Australia and subsequently chemically characterised. Here, these natural product-derived compounds were screened for in vitro-anthelmintic activity against the larvae and adult stages of Haemonchus contortus (barber's pole worm)-a highly pathogenic parasitic nematode of ruminants. Using an optimised, whole-organism screening system, compounds were tested on exsheathed third-stage larvae (xL3s) and fourth-stage larvae (L4s). Anthelmintic activity was initially evaluated on these stages based on the inhibition of motility, development and/or changes in morphology (phenotype). We identified two compounds, 6-undecylsalicylic acid (3) and 6-tridecylsalicylic acid (4) isolated from the marine brown alga, Caulocystis cephalornithos, with inhibitory effects on xL3 and L4 motility and larval development, and the induction of a "skinny-straight" phenotype. Subsequent testing showed that these two compounds had an acute nematocidal effect (within 1-12 h) on adult males and females of H. contortus. Ultrastructural analysis of adult worms treated with compound 4 revealed significant damage to subcuticular musculature and associated tissues and cellular organelles including mitochondria. In conclusion, the present study has discovered two algal compounds possessing acute anthelmintic effects and with potential for hit-to-lead progression. Future work should focus on undertaking a structure-activity relationship study and on elucidating the mode(s) of action of optimised compounds.
  • Item
    Thumbnail Image
    Lipid composition and abundance in the reproductive and alimentary tracts of female Haemonchus contortus
    Wang, T ; Ma, G ; Nie, S ; Williamson, NA ; Reid, GE ; Gasser, RB (BMC, 2020-07-06)
    BACKGROUND: Lipids play essential structural and functional roles in the biology of animals. Studying the composition and abundance of lipids in parasites should assist in gaining a better understanding of their molecular biology, biochemistry and host-parasite interactions. METHODS: Here, we used a combination of high-performance liquid chromatography and mass spectrometric analyses, combined with bioinformatics, to explore the lipid composition and abundance in the reproductive (Rt) and alimentary (At) tracts of Haemonchus contortus. RESULTS: We identified and quantified 320 unique lipid species representing four categories: glycerolipids, glycerophospholipids, sphingolipids and steroid lipids. Glycerolipids (i.e. triradylglycerols) and glycerophospholipids (i.e. glycerophosphocholines) were the most commonly and abundant lipid classes identified and were significantly enriched in Rt and At, respectively. We propose that select parasite-derived lipids in Rt and At of adult female H. contortus are required as an energy source (i.e. triradylglycerol) or are involved in phospholipid biosynthesis (i.e. incorporated fatty acids) and host-parasite interactions (i.e. phospholipids and lysophospholipids). CONCLUSIONS: This work provides a first foundation to explore lipids at the organ-specific and tissue-specific levels in nematodes, and to start to unravel aspects of lipid transport, synthesis and metabolism, with a perspective on discovering new intervention targets.
  • Item
    Thumbnail Image
    High anti-Ascaris seroprevalence in fattening pigs in Sichuan, China, calls for improved management strategies
    Zheng, Y ; Xie, Y ; Geldhof, P ; Vlaminck, J ; Ma, G ; Gasser, RB ; Wang, T (BMC, 2020-02-12)
    BACKGROUND: Ascariasis, caused by Ascaris suum, is an important soil-transmitted parasitic disease of pigs worldwide. It leads to significant economic losses in the pork industry, as a consequence of low feed conversion efficiency in pigs and liver condemnation at slaughter. Despite ascariasis still being widespread on pig farms in many developing and the industrialised countries, there are surprisingly limited data on porcine ascariasis in China, where nearly half of the world's total pork is produced. METHODS: In the present study, using the recently developed A. suum-haemoglobin (As-Hb) antigen-based serological test, we screened 512 individual serum samples from fattening pigs from 13 farms across seven distinct locations of Sichuan Province in China for anti-Ascaris antibody. RESULTS: The prevalence of anti-Ascaris antibody ranged from 0% to 100% on the distinct farms, with the mean (overall) seroprevalence being > 60%. There was no significant difference in seroprevalence between the intensive and extensive farms. CONCLUSIONS: To our knowledge, this is the first study to measure anti-Ascaris seroprevalence in China. The results of this 'snapshot' investigation indicate that Ascaris infection in commercial pig farms in Sichuan Province is seriously underestimated, encouraging future, large-scale serological studies to assess the distribution and extent of Ascaris exposure and infection in various regions of China and the world.