Veterinary Biosciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 12
  • Item
    Thumbnail Image
    First Evidence of Function for Schistosoma japonicum riok-1 and RIOK-1
    Mughal, MN ; Ye, Q ; Zhao, L ; Grevelding, CG ; Li, Y ; Di, W ; He, X ; Li, X ; Gasser, RB ; Hu, M (MDPI, 2021-07-01)
    Protein kinases are known as key molecules that regulate many biological processes in animals. The right open reading frame protein kinase (riok) genes are known to be essential regulators in model organisms such as the free-living nematode Caenorhabditis elegans. However, very little is known about their function in parasitic trematodes (flukes). In the present study, we characterized the riok-1 gene (Sj-riok-1) and the inferred protein (Sj-RIOK-1) in the parasitic blood fluke, Schistosoma japonicum. We gained a first insight into function of this gene/protein through double-stranded RNA interference (RNAi) and chemical inhibition. RNAi significantly reduced Sj-riok-1 transcription in both female and male worms compared with untreated control worms, and subtle morphological alterations were detected in the ovaries of female worms. Chemical knockdown of Sj-RIOK-1 with toyocamycin (a specific RIOK-1 inhibitor/probe) caused a substantial reduction in worm viability and a major accumulation of mature oocytes in the seminal receptacle (female worms), and of spermatozoa in the sperm vesicle (male worms). These phenotypic alterations indicate that the function of Sj-riok-1 is linked to developmental and/or reproductive processes in S. japonicum.
  • Item
    Thumbnail Image
    Cryptosporidium of birds in pet markets in Wuhan city, Hubei, China.
    Liao, C ; Wang, T ; Koehler, AV ; Hu, M ; Gasser, RB (Elsevier BV, 2021)
    Cryptosporidium is a group of protistan parasites of a range of vertebrates including mammals and birds. Stimulated by previous work that revealed "zoonotic" Cryptosporidium meleagridis subtypes (i.e. IIIbA26G1R1b and IIIbA22G1R1c) in diarrhoeic children and domestic chickens in Wuhan city and environs in Hubei Province, China, here we explored whether zoonotic C. meleagridis subtypes might also occur in pet birds in Wuhan city. From 11 bird markets in this city, we collected 322 faecal samples from 48 species of birds (representing six taxonomic orders), isolated genomic DNA and then conducted PCR-based sequencing of genetic markers in the small subunit (SSU) of the nuclear ribosomal RNA and the 60 kDa glycoprotein (gp60) genes of Cryptosporidium. Using SSU, Cryptosporidium was detected in 55 (17%) of the 322 samples. Cryptosporidium avium, C. baileyi, C. meleagridis, C. muris and C. proventriculi were characterised in 18%, 47%, 11%, 2% and 20% of the 55 samples, respectively, and a novel Cryptosporidium galli-like taxon in one sample. Using gp60, only one subtype (IIIeA17G2R1) of C. meleagridis was identified, which had not been detected in a previous study of diarrhoeic children in Wuhan. However, IIIe subtypes have been found in both humans and birds around the world. The relatively high prevalence and genetic diversity of Cryptosporidium recorded here in pet birds raise awareness about possible reservoirs of zoonotic variants of Cryptosporidium in birds in Wuhan, and potentially, other provinces in China.
  • Item
    Thumbnail Image
    The mitochondrial genomes of Ancylostoma caninum and Bunostomum phlebotomum - two hookworms of animal health and zoonotic importance
    Jex, AR ; Waeschenbach, A ; Hu, M ; Van Wyk, JA ; Beveridge, I ; Littlewood, DTJ ; Gasser, RB (BMC, 2009-02-11)
    BACKGROUND: Hookworms are blood-feeding nematodes that parasitize the small intestines of many mammals, including humans and cattle. These nematodes are of major socioeconomic importance and cause disease, mainly as a consequence of anaemia (particularly in children or young animals), resulting in impaired development and sometimes deaths. Studying genetic variability within and among hookworm populations is central to addressing epidemiological and ecological questions, thus assisting in the control of hookworm disease. Mitochondrial (mt) genes are known to provide useful population markers for hookworms, but mt genome sequence data are scant. RESULTS: The present study characterizes the complete mt genomes of two species of hookworm, Ancylostoma caninum (from dogs) and Bunostomum phlebotomum (from cattle), each sequenced (by 454 technology or primer-walking), following long-PCR amplification from genomic DNA (approximately 20-40 ng) isolated from individual adult worms. These mt genomes were 13717 bp and 13790 bp in size, respectively, and each contained 12 protein coding, 22 transfer RNA and 2 ribosomal RNA genes, typical for other secernentean nematodes. In addition, phylogenetic analysis (by Bayesian inference and maximum likelihood) of concatenated mt protein sequence data sets for 12 nematodes (including Ancylostoma caninum and Bunostomum phlebotomum), representing the Ascaridida, Spirurida and Strongylida, was conducted. The analysis yielded maximum statistical support for the formation of monophyletic clades for each recognized nematode order assessed, except for the Rhabditida. CONCLUSION: The mt genomes characterized herein represent a rich source of population genetic markers for epidemiological and ecological studies. The strong statistical support for the construction of phylogenetic clades and consistency between the two different tree-building methods employed indicate the value of using whole mt genome data sets for systematic studies of nematodes. The grouping of the Spirurida and Ascaridida to the exclusion of the Strongylida was not supported in the present analysis, a finding which conflicts with the current evolutionary hypothesis for the Nematoda based on nuclear ribosomal gene data.
  • Item
    Thumbnail Image
    The RIO protein kinase-encoding gene Sj-riok-2 is involved in key reproductive processes in Schistosoma japonicum
    Zhao, L ; He, X ; Grevelding, CG ; Ye, Q ; Li, Y ; Gasser, RB ; Dissous, C ; Mughal, MN ; Zhou, Y-Q ; Zhao, J-L ; Hu, M (BMC, 2017-12-12)
    BACKGROUND: Schistosomiasis is one of the most prevalent parasitic diseases worldwide and is caused by parasitic trematodes of the genus Schistosoma. The pathogenesis of schistosomiasis is caused by eggs whose production is the consequence of the pairing of schistosomes and the subsequent sexual maturation of the female. Previous studies have demonstrated that protein kinases are involved in processes leading to the male-induced differentiation of the female gonads, ovary and vitellarium. Right open reading frame protein kinase 2 (RIOK-2) is a member of the atypical kinase family and shown in other organisms to be responsible for ribosomal RNA biogenesis and cell-cycle progression, as well as involves in nematode development. However, nothing is known about its functions in any trematode including schistosome. METHODS: We isolated and characterized the riok-2 gene from S. japonicum, and detected the transcriptional profiles of Sj-riok-2 by using real-time PCR and in situ hybridization. RNAi-mediated knockdown of Sj-riok-2 was performed, mitotic activities were detected by EdU incorporation assay and morphological changes on organs were observed by confocal laser scanning microscope (CLSM). RESULTS: In silico analyses of the amino acid sequence of Sj-RIOK-2 revealed typical features of this class of kinases including a winged helix (wHTH) domain and a RIO kinase domain. Sj-riok-2 is transcribed in different developmental stages of S. japonicum, with a higher abundance in adult females and eggs. Localization studies showed that Sj-riok-2 was mainly transcribed in female reproductive organs. Experiments with adult schistosomes in vitro demonstrated that the transcriptional level of Sj-riok-2 was affected by pairing. Knocking down Sj-riok-2 by RNAi reduced cell proliferation in the vitellarium and caused the increased amount of mature oocytes in ovary and an accumulation of eggs within the uterus. CONCLUSIONS: Sj-riok-2 is involved in the reproductive development and maturation of female S. japonicum. Our findings provide first evidence for a pairing-dependent role of Sj-riok-2 in the reproductive development and maturation of female S. japonicum. Thus this study contributes to the understanding of molecular processes controlling reproduction in schistosomes.
  • Item
    Thumbnail Image
    A TGF-β type II receptor that associates with developmental transition in Haemonchus contortus in vitro.
    He, L ; Gasser, RB ; Li, T ; Di, W ; Li, F ; Zhang, H ; Zhou, C ; Fang, R ; Hu, M ; Gilleard, JS (Public Library of Science, 2019-12-02)
    BACKGROUND: The TGF-β signalling pathway plays a key role in regulating dauer formation in the free-living nematode Caenorhabditis elegans, and previous work has shown that TGF-β receptors are involved in parasitic nematodes. Here, we explored the structure and function of a TGF-β type II receptor homologue in the TGF-β signalling pathway in Haemonchus contortus, a highly pathogenic, haematophagous parasitic nematode. METHODOLOGY/PRINCIPAL FINDINGS: Amino acid sequence and phylogenetic analyses revealed that the protein, called Hc-TGFBR2 (encoded by the gene Hc-tgfbr2), is a member of TGF-β type II receptor family and contains conserved functional domains, both in the extracellular region containing cysteine residues that form a characteristic feature (CXCX4C) of TGF-β type II receptor and in the intracellular regions containing a serine/threonine kinase domain. The Hc-tgfbr2 gene was transcribed in all key developmental stages of H. contortus, with particularly high levels in the infective third-stage larvae (L3s) and male adults. Immunohistochemical results revealed that Hc-TGFBR2 was expressed in the intestine, ovary and eggs within the uterus of female adults, and also in the testes of male adults of H. contortus. Double-stranded RNA interference (RNAi) in this nematode by soaking induced a marked decrease in transcription of Hc-tgfbr2 and in development from the exsheathed L3 to the fourth-stage larva (L4) in vitro. CONCLUSIONS/SIGNIFICANCE: These results indicate that Hc-TGFBR2 plays an important role in governing developmental processes in H. contortus via the TGF-β signalling pathway, particularly in the transition from the free-living to the parasitic stages.
  • Item
    Thumbnail Image
    Identification and characterization of an R-Smad homologue (Hco-DAF-8) from Haemonchus contortus
    Li, F-F ; Gasser, RB ; Liu, F ; Shan, J-N ; Di, W-D ; He, L ; Zhou, C-X ; Wang, C-Q ; Fang, R ; Hu, M (BMC, 2020-04-03)
    BACKGROUND: Smad proteins are essential cellular mediators within the transforming growth factor-β (TGF-β) superfamily. They directly transmit incoming signals from the cell surface receptors to the nucleus. In spite of their functional importance, almost nothing is known about Smad proteins in parasitic nematodes including Haemonchus contortus, an important blood-sucking nematode of small ruminants. METHODS: Based on genomic and transcriptome data for H. contortus and using bioinformatics methods, a Smad homologue (called Hco-daf-8) was inferred from H. contortus and the structural characteristics of this gene and its encoded protein Hco-DAF-8 established. Using real-time PCR and immunofluorescence assays, temporal transcriptional and spatial expression profiles of Hco-daf-8 were studied. Gene rescue in Caenorhabditis elegans was then applied to assess the function of Hco-daf-8 and a specific inhibitor of human Smad3 (called SIS3) was employed to evaluate the roles of Hco-DAF-8 in H. contortus development. RESULTS: The features of Hco-DAF-8 (502 amino acids), including conserved R-Smad domains and residues of the L3-loop that determine pathway specificity, are consistent with a TGF-β type I receptor-activated R-Smad. The Hco-daf-8 gene was transcribed in all developmental stages of H. contortus studied, with a higher level of transcription in the fourth-stage larval (L4) females and the highest level in adult males. Hco-DAF-8 was expressed in the platymyarian muscular cells, intestine and reproductive system of adult stages. Gene rescue experiments showed that Hco-daf-8 was able to partially rescue gene function in a daf-8 deficient mutant strain of C. elegans, leading to a resumption of normal development. In H. contortus, SIS3 was shown to affect H. contortus development from the exsheathed third-stage larvae (L3s) to L4s in vitro. CONCLUSIONS: These findings suggest that Hco-DAF-8, encoded by the gene Hco-daf-8, is an important cellular mediator of H. contortus development via the TGF-β signalling pathway. They provide a basis for future explorations of Hco-DAF-8 and associated pathways in H. contortus and other important parasitic nematodes.
  • Item
    Thumbnail Image
    Using 454 technology for long-PCR based sequencing of the complete mitochondrial genome from single Haemonchus contortus (Nematoda)
    Jex, AR ; Hu, M ; Littlewood, DTJ ; Waeschenbach, A ; Gasser, RB (BMC, 2008-01-11)
    BACKGROUND: Mitochondrial (mt) genomes represent a rich source of molecular markers for a range of applications, including population genetics, systematics, epidemiology and ecology. In the present study, we used 454 technology (or the GS20, massively parallel picolitre reactor platform) to determine the complete mt genome of Haemonchus contortus (Nematoda: Trichostrongylidae), a parasite of substantial agricultural, veterinary and economic significance. We validate this approach by comparison with mt sequences from publicly available expressed sequence tag (EST) and genomic survey sequence (GSS) data sets. RESULTS: The complete mt genome of Haemonchus contortus was sequenced directly from long-PCR amplified template utilizing genomic DNA (~20-40 ng) from a single adult male using 454 technology. A single contig was assembled and compared against mt sequences mined from publicly available EST (NemBLAST) and GSS datasets. The comparison demonstrated that the 454 technology platform is reliable for the sequencing of AT-rich mt genomes from nematodes. The mt genome sequenced for Haemonchus contortus was 14,055 bp in length and was highly AT-rich (78.1%). In accordance with other chromadorean nematodes studied to date, the mt genome of H. contortus contained 36 genes (12 protein coding, 22 tRNAs, rrnL and rrnS) and was similar in structure, size and gene arrangement to those characterized previously for members of the Strongylida. CONCLUSION: The present study demonstrates the utility of 454 technology for the rapid determination of mt genome sequences from tiny amounts of DNA and reveals a wealth of mt genomic data in current databases available for mining. This approach provides a novel platform for high-throughput sequencing of mt genomes from nematodes and other organisms.
  • Item
    Thumbnail Image
    Tv-RIO1-an atypical protein kinase from the parasitic nematode Trichostrongylus vitrinus
    Hu, M ; LaRonde-LeBlanc, N ; Sternberg, PW ; Gasser, RB (BMC, 2008-09-22)
    UNLABELLED: BACKGROUND: Protein kinases are key enzymes that regulate a wide range of cellular processes, including cell-cycle progression, transcription, DNA replication and metabolic functions. These enzymes catalyse the transfer of phosphates to serine, threonine and tyrosine residues, thus playing functional roles in reversible protein phosphorylation. There are two main groups, namely eukaryotic protein kinases (ePKs) and atypical protein kinases (aPKs); RIO kinases belong to the latter group. While there is some information about RIO kinases and their roles in animals, nothing is known about them in parasites. This is the first study to characterise a RIO1 kinase from any parasite. RESULTS: A full-length cDNA (Tv-rio-1) encoding a RIO1 protein kinase (Tv-RIO1) was isolated from the economically important parasitic nematode Trichostrongylus vitrinus (Order Strongylida). The uninterrupted open reading frame (ORF) of 1476 nucleotides encoded a protein of 491 amino acids, containing the characteristic RIO1 motif LVHADLSEYNTL. Tv-rio-1 was transcribed at the highest level in the third-stage larva (L3), and a higher level in adult females than in males. Comparison with homologues from other organisms showed that protein Tv-RIO1 had significant homology to related proteins from a range of metazoans and plants. Amino acid sequence identity was most pronounced in the ATP-binding motif, active site and metal binding loop. Phylogenetic analyses of selected amino acid sequence data revealed Tv-RIO1 to be most closely related to the proteins in the species of Caenorhabditis. A structural model of Tv-RIO1 was constructed and compared with the published crystal structure of RIO1 of Archaeoglobus fulgidus (Af-Rio1). CONCLUSION: This study provides the first insights into the RIO1 protein kinases of nematodes, and a foundation for further investigations into the biochemical and functional roles of this molecule in biological processes in parasitic nematodes.
  • Item
    Thumbnail Image
    The Mitochondrial Genome of Toxocara canis
    Jex, AR ; Waeschenbach, A ; Littlewood, DTJ ; Hu, M ; Gasser, RB ; Unnasch, TR (PUBLIC LIBRARY SCIENCE, 2008-08-01)
    Toxocara canis (Ascaridida: Nematoda), which parasitizes (at the adult stage) the small intestine of canids, can be transmitted to a range of other mammals, including humans, and can cause the disease toxocariasis. Despite its significance as a pathogen, the genetics, epidemiology and biology of this parasite remain poorly understood. In addition, the zoonotic potential of related species of Toxocara, such as T. cati and T. malaysiensis, is not well known. Mitochondrial DNA is known to provide genetic markers for investigations in these areas, but complete mitochondrial genomic data have been lacking for T. canis and its congeners. In the present study, the mitochondrial genome of T. canis was amplified by long-range polymerase chain reaction (long PCR) and sequenced using a primer-walking strategy. This circular mitochondrial genome was 14162 bp and contained 12 protein-coding, 22 transfer RNA, and 2 ribosomal RNA genes consistent for secementean nematodes, including Ascaris suum and Anisakis simplex (Ascaridida). The mitochondrial genome of T. canis provides genetic markers for studies into the systematics, population genetics and epidemiology of this zoonotic parasite and its congeners. Such markers can now be used in prospecting for cryptic species and for exploring host specificity and zoonotic potential, thus underpinning the prevention and control of toxocariasis in humans and other hosts.
  • Item
    Thumbnail Image
    A transcriptomic analysis of the adult stage of the bovine lungworm, Dictyocaulus viviparus
    Ranganathan, S ; Nagaraj, SH ; Hu, M ; Strube, C ; Schnieder, T ; Gasser, RB (BMC, 2007-09-05)
    BACKGROUND: Lungworms of the genus Dictyocaulus (family Dictyocaulidae) are parasitic nematodes of major economic importance. They cause pathological effects and clinical disease in various ruminant hosts, particularly in young animals. Dictyocaulus viviparus, called the bovine lungworm, is a major pathogen of cattle, with severe infections being fatal. In this study, we provide first insights into the transcriptome of the adult stage of D. viviparus through the analysis of expressed sequence tags (ESTs). RESULTS: Using our EST analysis pipeline, we estimate that the present dataset of 4436 ESTs is derived from 2258 genes based on cluster and comparative genomic analyses of the ESTs. Of the 2258 representative ESTs, 1159 (51.3%) had homologues in the free-living nematode C. elegans, 1174 (51.9%) in parasitic nematodes, 827 (36.6%) in organisms other than nematodes, and 863 (38%) had no significant match to any sequence in the current databases. Of the C. elegans homologues, 569 had observed 'non-wildtype' RNAi phenotypes, including embryonic lethality, maternal sterility, sterility in progeny, larval arrest and slow growth. We could functionally classify 776 (35%) sequences using the Gene Ontologies (GO) and established pathway associations to 696 (31%) sequences in Kyoto Encyclopedia of Genes and Genomes (KEGG). In addition, we predicted 85 secreted proteins which could represent potential candidates for developing novel anthelmintics or vaccines. CONCLUSION: The bioinformatic analyses of ESTs data for D. viviparus has elucidated sets of relatively conserved and potentially novel genes. The genes discovered in this study should assist research toward a better understanding of the basic molecular biology of D. viviparus, which could lead, in the longer term, to novel intervention strategies. The characterization of the D. viviparus transcriptome also provides a foundation for whole genome sequence analysis and future comparative transcriptomic analyses.