Veterinary Biosciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 13
  • Item
    Thumbnail Image
    Thermal proteome profiling reveals Haemonchus orphan protein HCO_011565 as a target of the nematocidal small molecule UMW-868
    Taki, ACC ; Wang, T ; Nguyen, NNN ; Ang, C-S ; Leeming, MGG ; Nie, S ; Byrne, JJJ ; Young, NDD ; Zheng, Y ; Ma, G ; Korhonen, PKK ; Koehler, AVV ; Williamson, NAA ; Hofmann, A ; Chang, BCH ; Haeberli, C ; Keiser, J ; Jabbar, A ; Sleebs, BEE ; Gasser, RBB (FRONTIERS MEDIA SA, 2022-10-14)
    Parasitic roundworms (nematodes) cause destructive diseases, and immense suffering in humans and other animals around the world. The control of these parasites relies heavily on anthelmintic therapy, but treatment failures and resistance to these drugs are widespread. As efforts to develop vaccines against parasitic nematodes have been largely unsuccessful, there is an increased focus on discovering new anthelmintic entities to combat drug resistant worms. Here, we employed thermal proteome profiling (TPP) to explore hit pharmacology and to support optimisation of a hit compound (UMW-868), identified in a high-throughput whole-worm, phenotypic screen. Using advanced structural prediction and docking tools, we inferred an entirely novel, parasite-specific target (HCO_011565) of this anthelmintic small molecule in the highly pathogenic, blood-feeding barber's pole worm, and in other socioeconomically important parasitic nematodes. The "hit-to-target" workflow constructed here provides a unique prospect of accelerating the simultaneous discovery of novel anthelmintics and associated parasite-specific targets.
  • Item
    Thumbnail Image
    Advances in the discovery and development of anthelmintics by harnessing natural product scaffolds
    Herath, HMPD ; Taki, AC ; Sleebs, BE ; Hofmann, A ; Nguyen, N ; Preston, S ; Davis, RA ; Jabbar, A ; Gasser, RB ; Rollinson, D ; Stothard, JR (ELSEVIER ACADEMIC PRESS INC, 2021)
    Widespread resistance to currently-used anthelmintics represents a major obstacle to controlling parasitic nematodes of livestock animals. Given the reliance on anthelmintics in many control regimens, there is a need for the continued discovery and development of new nematocides. Enabling such a focus are: (i) the major chemical diversity of natural products; (ii) the availability of curated, drug-like extract-, fraction- and/or compound-libraries from natural sources; (iii) the utility and practicality of well-established whole-worm bioassays for Haemonchus contortus-an important parasitic nematodes of livestock-to screen natural product libraries; and (iv) the availability of advanced chromatographic (HPLC), spectroscopic (NMR) and spectrometric (MS) techniques for bioassay-guided fractionation and structural elucidation. This context provides a sound basis for the identification and characterisation of anthelmintic candidates from natural sources. This chapter provides a background on the importance and impact of helminth infections/diseases, parasite control and aspects of drug discovery, and reviews recent work focused on (i) screening well-defined compound libraries to establish the methods needed for large-scale screening of natural extract libraries; (ii) discovering plant and marine extracts with nematocidal or nematostatic activity, and purifying bioactive compounds and assessing their potential for further development; and (iii) synthesising analogues of selected purified natural compounds for the identification of possible 'lead' candidates. The chapter describes some lessons learned from this work and proposes future areas of focus for drug discovery. Collectively, the findings from this recent work show potential for selected natural product scaffolds as candidates for future development. Developing such candidates via future chemical optimisation, efficacy and safety evaluations, broad spectrum activity assessments, and target identification represents an exciting prospect and, if successful, could pave the way to subsequent pre-clinical and clinical evaluations.
  • Item
    Thumbnail Image
    Whole-organism phenotypic screening methods used in early-phase anthelmintic drug discovery
    Herath, HMPD ; Taki, AC ; Rostami, A ; Jabbar, A ; Keiser, J ; Geary, TG ; Gasser, RB (PERGAMON-ELSEVIER SCIENCE LTD, 2022)
    Diseases caused by parasitic helminths (worms) represent a major global health burden in both humans and animals. As vaccines against helminths have yet to achieve a prominent role in worm control, anthelmintics are the primary tool to limit production losses and disease due to helminth infections in both human and veterinary medicine. However, the excessive and often uncontrolled use of these drugs has led to widespread anthelmintic resistance in these worms - particularly of animals - to almost all commercially available anthelmintics, severely compromising control. Thus, there is a major demand for the discovery and development of new classes of anthelmintics. A key component of the discovery process is screening libraries of compounds for anthelmintic activity. Given the need for, and major interest by the pharmaceutical industry in, novel anthelmintics, we considered it both timely and appropriate to re-examine screening methods used for anthelmintic discovery. Thus, we reviewed current literature (1977-2021) on whole-worm phenotypic screening assays developed and used in academic laboratories, with a particular focus on those employed to discover nematocides. This review reveals that at least 50 distinct phenotypic assays with low-, medium- or high-throughput capacity were developed over this period, with more recently developed methods being quantitative, semi-automated and higher throughput. The main features assessed or measured in these assays include worm motility, growth/development, morphological changes, viability/lethality, pharyngeal pumping, egg hatching, larval migration, CO2- or ATP-production and/or enzyme activity. Recent progress in assay development has led to the routine application of practical, cost-effective, medium- to high-throughput whole-worm screening assays in academic or public-private partnership (PPP) contexts, and major potential for novel high-content, high-throughput platforms in the near future. Complementing this progress are major advances in the molecular data sciences, computational biology and informatics, which are likely to further enable and accelerate anthelmintic drug discovery and development.
  • Item
    Thumbnail Image
    A High-Throughput Phenotypic Screen of the 'Pandemic Response Box' Identifies a Quinoline Derivative with Significant Anthelmintic Activity
    Shanley, HT ; Taki, AC ; Byrne, JJ ; Jabbar, A ; Wells, TNC ; Samby, K ; Boag, PR ; Nguyen, N ; Sleebs, BE ; Gasser, RB (MDPI, 2022-02)
    Parasitic nematodes cause diseases in livestock animals and major economic losses to the agricultural industry worldwide. Nematodes of the order Strongylida, including Haemonchus contortus, are particularly important. The excessive use of anthelmintic compounds to treat infections and disease has led to widespread resistance to these compounds in nematodes, such that there is a need for new anthelmintics with distinctive mechanisms of action. With a focus on discovering new anthelmintic entities, we screened 400 chemically diverse compounds within the 'Pandemic Response Box' (from Medicines for Malaria Venture, MMV) for activity against H. contortus and its free-living relative, Caenorhabditis elegans-a model organism. Using established phenotypic assays, test compounds were evaluated in vitro for their ability to inhibit the motility and/or development of H. contortus and C. elegans. Dose-response evaluations identified a compound, MMV1581032, that significantly the motility of H. contortus larvae (IC50 = 3.4 ± 1.1 μM) and young adults of C. elegans (IC50 = 7.1 ± 4.6 μM), and the development of H. contortus larvae (IC50 = 2.2 ± 0.7 μM). The favourable characteristics of MMV1581032, such as suitable physicochemical properties and an efficient, cost-effective pathway to analogue synthesis, indicates a promising candidate for further evaluation as a nematocide. Future work will focus on a structure-activity relationship investigation of this chemical scaffold, a toxicity assessment of potent analogues and a mechanism/mode of action investigation.
  • Item
    Thumbnail Image
    Dysidenin from the Marine Sponge Citronia sp. Affects the Motility and Morphology of Haemonchus contortus Larvae In Vitro
    Ramage, KS ; Taki, AC ; Lum, KY ; Hayes, S ; Byrne, JJ ; Wang, T ; Hofmann, A ; Ekins, MG ; White, JM ; Jabbar, A ; Davis, RA ; Gasser, RB (MDPI, 2021-12)
    High-throughput screening of the NatureBank marine extract library (n = 7616) using a phenotypic assay for the parasitic nematode Haemonchus contortus identified an active extract derived from the Australian marine sponge Citronia sp. Bioassay-guided fractionation of the CH2Cl2/MeOH extract from Citronia sp. resulted in the purification of two known hexachlorinated peptides, dysidenin (1) and dysideathiazole (2). Compound 1 inhibited the growth/development of H. contortus larvae and induced multiple phenotypic changes, including a lethal evisceration (Evi) phenotype and/or somatic cell and tissue destruction. This is the first report of anthelmintic activity for these rare and unique polychlorinated peptides.
  • Item
    Thumbnail Image
    High Throughput Screening of the NatureBank 'Marine Collection' in a Haemonchus Bioassay Identifies Anthelmintic Activity in Extracts from a Range of Sponges from Australian Waters
    Taki, AC ; Byrne, JJ ; Jabbar, A ; Lum, KY ; Hayes, S ; Addison, RS ; Ramage, KS ; Hofmann, A ; Ekins, MG ; Wang, T ; Chang, BCH ; Davis, RA ; Gasser, RB (MDPI, 2021-10)
    Widespread resistance in parasitic nematodes to most classes of anthelmintic drugs demands the discovery and development of novel compounds with distinct mechanisms of action to complement strategic or integrated parasite control programs. Products from nature-which assume a diverse 'chemical space'-have significant potential as a source of anthelmintic compounds. In the present study, we screened a collection of extracts (n = 7616) derived from marine invertebrates sampled from Australian waters in a high throughput bioassay for in vitro anti-parasitic activity against the barber's pole worm (Haemonchus contortus)-an economically important parasitic nematode of livestock animals. In this high throughput screen (HTS), we identified 58 active extracts that reduced larval motility by ≥70% (at 90 h), equating to an overall 'hit rate' of ~0.8%. Of these 58 extracts, 16 also inhibited larval development by ≥80% (at 168 h) and/or induced 'non-wild-type' (abnormal) larval phenotypes with reference to 'wild-type' (normal) larvae not exposed to extract (negative controls). Most active extracts (54 of 58) originated from sponges, three from chordates (tunicates) and one from a coral; these extracts represented 37 distinct species/taxa of 23 families. An analysis of samples by 1H NMR fingerprinting was utilised to dereplicate hits and to prioritise a set of 29 sponge samples for future chemical investigation. Overall, these results indicate that a range of sponge species from Australian waters represents a rich source of natural compounds with nematocidal or nematostatic properties. Our plan now is to focus on in-depth chemical investigations of the sample set prioritised herein.
  • Item
    Thumbnail Image
    Practical High-Throughput Method to Screen Compounds for Anthelmintic Activity against Caenorhabditis elegans
    Taki, AC ; Byrne, JJ ; Boag, PR ; Jabbar, A ; Gasser, RB (MDPI, 2021-07)
    In the present study, we established a practical and cost-effective high throughput screening assay, which relies on the measurement of the motility of Caenorhabditis elegans by infrared light-interference. Using this assay, we screened 14,400 small molecules from the "HitFinder" library (Maybridge), achieving a hit rate of 0.3%. We identified small molecules that reproducibly inhibited the motility of C. elegans (young adults) and assessed dose relationships for a subset of compounds. Future work will critically evaluate the potential of some of these hits as candidates for subsequent optimisation or repurposing as nematocides or nematostats. This high throughput screening assay has the advantage over many previous assays in that it is cost- and time-effective to carry out and achieves a markedly higher throughput (~10,000 compounds per week); therefore, it is suited to the screening of libraries of tens to hundreds of thousands of compounds for subsequent evaluation and development. The present phenotypic whole-worm assay should be readily adaptable to a range of socioeconomically important parasitic nematodes of humans and animals, depending on their dimensions and motility characteristics in vitro, for the discovery of new anthelmintic candidates. This focus is particularly important, given the widespread problems associated with drug resistance in many parasitic worms of livestock animals globally.
  • Item
    Thumbnail Image
    High-Throughput Phenotypic Assay to Screen for Anthelmintic Activity on Haemonchus contortus
    Taki, AC ; Byrne, JJ ; Wang, T ; Sleebs, BE ; Nguyen, N ; Hall, RS ; Korhonen, PK ; Chang, BCH ; Jackson, P ; Jabbar, A ; Gasser, RB (MDPI, 2021-07)
    Parasitic worms cause very significant diseases in animals and humans worldwide, and their control is critical to enhance health, well-being and productivity. Due to widespread drug resistance in many parasitic worms of animals globally, there is a major, continuing demand for the discovery and development of anthelmintic drugs for use to control these worms. Here, we established a practical, cost-effective and semi-automated high throughput screening (HTS) assay, which relies on the measurement of motility of larvae of the barber's pole worm (Haemonchus contortus) using infrared light-interference. Using this assay, we screened 80,500 small molecules and achieved a hit rate of 0.05%. We identified three small molecules that reproducibly inhibited larval motility and/or development (IC50 values of ~4 to 41 µM). Future work will critically assess the potential of selected hits as candidates for subsequent optimisation or repurposing against parasitic nematodes. This HTS assay has a major advantage over most previous assays in that it achieves a ≥ 10-times higher throughput (i.e., 10,000 compounds per week), and is thus suited to the screening of libraries of tens of thousands to hundreds of thousands of compounds for subsequent hit-to-lead optimisation or effective repurposing and development. The current assay should be adaptable to many socioeconomically important parasitic nematodes, including those that cause neglected tropical diseases (NTDs). This aspect is of relevance, given the goals of the World Health Organization (WHO) Roadmap for NTDs 2021-2030, to develop more effective drugs and drug combinations to improve patient outcomes and circumvent the ineffectiveness of some current anthelmintic drugs and possible drug resistance.
  • Item
    Thumbnail Image
    Three Small Molecule Entities (MPK18, MPK334 and YAK308) with Activity against Haemonchus contortus In Vitro
    Taki, AC ; Jabbar, A ; Kurz, T ; Lungerich, B ; Ma, G ; Byrne, JJ ; Pflieger, M ; Asfaha, Y ; Fischer, F ; Chang, BCH ; Sleebs, BE ; Gasser, RB (MDPI, 2021-05)
    Due to widespread multi-drug resistance in parasitic nematodes of livestock animals, there is an urgent need to discover new anthelmintics with distinct mechanisms of action. Extending previous work, here we screened a panel of 245 chemically-diverse small molecules for anti-parasitic activity against Haemonchus contortus-an economically important parasitic nematode of livestock. This panel was screened in vitro against exsheathed third-stage larvae (xL3) of H. contortus using an established phenotypic assay, and the potency of select compounds to inhibit larval motility and development assessed in dose-response assays. Of the 245 compounds screened, three-designated MPK18, MPK334 and YAK308-induced non-wildtype larval phenotypes and repeatedly inhibited xL3-motility, with IC50 values of 45.2 µM, 17.1 µM and 52.7 µM, respectively; two also inhibited larval development, with IC50 values of 12.3 µM (MPK334) and 6.5 µM (YAK308), and none of the three was toxic to human liver cells (HepG2). These findings suggest that these compounds deserve further evaluation as nematocidal candidates. Future work should focus on structure-activity relationship (SAR) studies of these chemical scaffolds, and assess the in vitro and in vivo efficacies and safety of optimised compounds against adults of H. contortus.
  • Item
    Thumbnail Image
    A perspective on the discovery of selected compounds with anthelmintic activity against the barber's pole worm-Where to from here?
    Jiao, Y ; Preston, S ; Hofmann, A ; Taki, A ; Baell, J ; Chang, BCH ; Jabbar, A ; Gasser, RB ; Rollinson, D ; Stothard, R (ACADEMIC PRESS LTD-ELSEVIER SCIENCE LTD, 2020-01-01)
    Parasitic roundworms (nematodes) cause substantial morbidity and mortality in animals worldwide. Anthelmintic treatment is central to controlling these worms, but widespread resistance to most of the commercially available anthelmintics for veterinary and agricultural use is compromising control, such that there is an urgency to discover new and effective drugs. The purpose of this article is to review information on parasitic nematodes, the treatment and control of parasitic nematode infections and aspects of discovering new anthelmintics in the context of anthelmintic resistance problems, and then to discuss some progress that our group has made in identifying selected compounds with activity against nematodes. The focus of our recent work has been on discovering new chemical entities and known drugs with anthelmintic activities against Haemonchus contortus as well as other socioeconomically important parasitic nematodes for subsequent development. Using whole worm-based phenotypic assays, we have been screening compound collections obtained via product-development-partnerships and/or collaborators, and active compounds have been assessed for their potential as anthelmintic candidates. Following the screening of 15,333 chemicals from five distinct compound collections against H. contortus, we have discovered one new chemical entity (designated SN00797439), two human kinase inhibitors (SNS-032 and AG-1295), 14 tetrahydroquinoxaline analogues, one insecticide (tolfenpyrad) and two tolfenpyrad (pyrazole-5-carboxamide) derivatives (a-15 and a-17) with anthelmintic activity in vitro. Some of these 20 ‘hit’ compounds have selectivity against H. contortus in vitro when compared to particular human cell lines. In our opinion, some of these compounds could represent starting points for ‘lead’ development. Accordingly, the next research steps to be pursued include: (i) chemical optimisation of representative chemicals via structure-activity relationship (SAR) evaluations; (ii) assessment of the breadth of spectrum of anthelmintic activity on a range of other parasitic nematodes, such as strongyloids, ascaridoids, enoplids and filarioids; (iii) detailed investigations of the absorption, distribution, metabolism, excretion and toxicity (ADMET) of optimised chemicals with broad nematocidal or nematostatic activity; and (iv) establishment of the modes of action of lead candidates.