Veterinary Biosciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 10
  • Item
    Thumbnail Image
    'Bingo'-a large language model- and graph neural network-based workflow for the prediction of essential genes from protein data
    Ma, J ; Song, J ; Young, ND ; Chang, BCH ; Korhonen, PK ; Campos, TL ; Liu, H ; Gasser, RB (Oxford University Press, 2024-01)
    The identification and characterization of essential genes are central to our understanding of the core biological functions in eukaryotic organisms, and has important implications for the treatment of diseases caused by, for example, cancers and pathogens. Given the major constraints in testing the functions of genes of many organisms in the laboratory, due to the absence of in vitro cultures and/or gene perturbation assays for most metazoan species, there has been a need to develop in silico tools for the accurate prediction or inference of essential genes to underpin systems biological investigations. Major advances in machine learning approaches provide unprecedented opportunities to overcome these limitations and accelerate the discovery of essential genes on a genome-wide scale. Here, we developed and evaluated a large language model- and graph neural network (LLM–GNN)-based approach, called ‘Bingo’, to predict essential protein-coding genes in the metazoan model organisms Caenorhabditis elegans and Drosophila melanogaster as well as in Mus musculus and Homo sapiens (a HepG2 cell line) by integrating LLM and GNNs with adversarial training. Bingo predicts essential genes under two ‘zero-shot’ scenarios with transfer learning, showing promise to compensate for a lack of high-quality genomic and proteomic data for non-model organisms. In addition, the attention mechanisms and GNNExplainer were employed to manifest the functional sites and structural domain with most contribution to essentiality. In conclusion, Bingo provides the prospect of being able to accurately infer the essential genes of little- or under-studied organisms of interest, and provides a biological explanation for gene essentiality.
  • Item
    No Preview Available
    Structure-activity relationship and target investigation of 2-aryl quinolines with nematocidal activity
    Shanley, HT ; Taki, AC ; Nguyen, N ; Wang, T ; Byrne, JJ ; Ang, C-S ; Leeming, MG ; Nie, S ; Williamson, N ; Zheng, Y ; Young, ND ; Korhonen, PK ; Hofmann, A ; Chang, BCH ; Wells, TNC ; Haberli, C ; Keiser, J ; Jabbar, A ; Sleebs, BE ; Gasser, RB (ELSEVIER SCI LTD, 2024-04)
    Within the context of our anthelmintic discovery program, we recently identified and evaluated a quinoline derivative, called ABX464 or obefazimod, as a nematocidal candidate; synthesised a series of analogues which were assessed for activity against the free-living nematode Caenorhabditis elegans; and predicted compound-target relationships by thermal proteome profiling (TPP) and in silico docking. Here, we logically extended this work and critically evaluated the anthelmintic activity of ABX464 analogues on Haemonchus contortus (barber's pole worm) - a highly pathogenic nematode of ruminant livestock. First, we tested a series of 44 analogues on H. contortus (larvae and adults) to investigate the nematocidal pharmacophore of ABX464, and identified one compound with greater potency than the parent compound and showed moderate activity against a select number of other parasitic nematodes (including Ancylostoma, Heligmosomoides and Strongyloides species). Using TPP and in silico modelling studies, we predicted protein HCON_00074590 (a predicted aldo-keto reductase) as a target candidate for ABX464 in H. contortus. Future work aims to optimise this compound as a nematocidal candidate and investigate its pharmacokinetic properties. Overall, this study presents a first step toward the development of a new nematocide.
  • Item
    No Preview Available
    Analysis of Haemonchus embryos at single cell resolution identifies two eukaryotic elongation factors as intervention target candidates
    Korhonen, PK ; Wang, T ; Young, ND ; Byrne, JJ ; Campos, TL ; Chang, BCH ; Taki, AC ; Gasser, RB (ELSEVIER, 2024-12)
    Advances in single cell technologies are allowing investigations of a wide range of biological processes and pathways in animals, such as the multicellular model organism Caenorhabditis elegans - a free-living nematode. However, there has been limited application of such technology to related parasitic nematodes which cause major diseases of humans and animals worldwide. With no vaccines against the vast majority of parasitic nematodes and treatment failures due to drug resistance or inefficacy, new intervention targets are urgently needed, preferably informed by a deep understanding of these nematodes' cellular and molecular biology - which is presently lacking for most worms. Here, we created the first single cell atlas for an early developmental stage of Haemonchus contortus - a highly pathogenic, C. elegans-related parasitic nematode. We obtained and curated RNA sequence (snRNA-seq) data from single nuclei from embryonating eggs of H. contortus (150,000 droplets), and selected high-quality transcriptomic data for > 14,000 single nuclei for analysis, and identified 19 distinct clusters of cells. Guided by comparative analyses with C. elegans, we were able to reproducibly assign seven cell clusters to body wall muscle, hypodermis, neuronal, intestinal or seam cells, and identified eight genes that were transcribed in all cell clusters/types, three of which were inferred to be essential in H. contortus. Two of these genes (i.e. Hc-eef-1A and Hc-eef1G), coding for eukaryotic elongation factors (called Hc-eEF1A and Hc-eEF1G), were also demonstrated to be transcribed and expressed in all key developmental stages of H. contortus. Together with these findings, sequence- and structure-based comparative analyses indicated the potential of Hc-eEF1A and/or Hc-eEF1G as intervention targets within the protein biosynthesis machinery of H. contortus. Future work will focus on single cell studies of all key developmental stages and tissues of H. contortus, and on evaluating the suitability of the two elongation factor proteins as drug targets in H. contortus and related nematodes, with a view to finding new nematocidal drug candidates.
  • Item
    No Preview Available
    Genome-wide exploration reveals distinctive northern and southern variants of Clonorchis sinensis in the Far East
    Kinkar, L ; Korhonen, PK ; Saarma, U ; Wang, T ; Zhu, X-Q ; Harliwong, I ; Yang, B ; Fink, JL ; Wang, D ; Chang, BCH ; Chelomina, GN ; Koehler, AV ; Young, ND ; Gasser, RB (WILEY, 2023-05)
    Clonorchis sinensis is a carcinogenic liver fluke that causes clonorchiasis-a neglected tropical disease (NTD) affecting ~35 million people worldwide. No vaccine is available, and chemotherapy relies on one anthelmintic, praziquantel. This parasite has a complex life history and is known to infect a range of species of intermediate (freshwater snails and fish) and definitive (piscivorous) hosts. Despite this biological complexity and the impact of this biocarcinogenic pathogen, there has been no previous study of molecular variation in this parasite on a genome-wide scale. Here, we conducted the first extensive nuclear genomic exploration of C. sinensis individuals (n = 152) representing five distinct populations from mainland China, and one from Far East Russia, and revealed marked genetic variation within this species between "northern" and "southern" geographical regions. The discovery of this variation indicates the existence of biologically distinct variants within C. sinensis, which may have distinct epidemiology, pathogenicity and/or chemotherapic responsiveness. The detection of high heterozygosity within C. sinensis specimens suggests that this parasite has developed mechanisms to readily adapt to changing environments and/or host species during its life history/evolution. From an applied perspective, the identification of invariable genes could assist in finding new intervention targets in this parasite, given the major clinical relevance of clonorchiasis. From a technical perspective, the genomic-informatic workflow established herein will be readily applicable to a wide range of other parasites that cause NTDs.
  • Item
    Thumbnail Image
    Thermal proteome profiling reveals Haemonchus orphan protein HCO_011565 as a target of the nematocidal small molecule UMW-868
    Taki, ACC ; Wang, T ; Nguyen, NNN ; Ang, C-S ; Leeming, MGG ; Nie, S ; Byrne, JJJ ; Young, NDD ; Zheng, Y ; Ma, G ; Korhonen, PKK ; Koehler, AVV ; Williamson, NAA ; Hofmann, A ; Chang, BCH ; Haeberli, C ; Keiser, J ; Jabbar, A ; Sleebs, BEE ; Gasser, RBB (FRONTIERS MEDIA SA, 2022-10-14)
    Parasitic roundworms (nematodes) cause destructive diseases, and immense suffering in humans and other animals around the world. The control of these parasites relies heavily on anthelmintic therapy, but treatment failures and resistance to these drugs are widespread. As efforts to develop vaccines against parasitic nematodes have been largely unsuccessful, there is an increased focus on discovering new anthelmintic entities to combat drug resistant worms. Here, we employed thermal proteome profiling (TPP) to explore hit pharmacology and to support optimisation of a hit compound (UMW-868), identified in a high-throughput whole-worm, phenotypic screen. Using advanced structural prediction and docking tools, we inferred an entirely novel, parasite-specific target (HCO_011565) of this anthelmintic small molecule in the highly pathogenic, blood-feeding barber's pole worm, and in other socioeconomically important parasitic nematodes. The "hit-to-target" workflow constructed here provides a unique prospect of accelerating the simultaneous discovery of novel anthelmintics and associated parasite-specific targets.
  • Item
    No Preview Available
    Chromosome-level genome of Schistosoma haematobium underpins genome-wide explorations of molecular variation
    Stroehlein, AJ ; Korhonen, PK ; Lee, VV ; Ralph, SA ; Mentink-Kane, M ; You, H ; McManus, DP ; Tchuente, L-AT ; Stothard, JR ; Kaur, P ; Dudchenko, O ; Aiden, EL ; Yang, B ; Yang, H ; Emery, AM ; Webster, BL ; Brindley, PJ ; Rollinson, D ; Chang, BCH ; Gasser, RB ; Young, ND ; Zamanian, M (PUBLIC LIBRARY SCIENCE, 2022-02)
    Urogenital schistosomiasis is caused by the blood fluke Schistosoma haematobium and is one of the most neglected tropical diseases worldwide, afflicting > 100 million people. It is characterised by granulomata, fibrosis and calcification in urogenital tissues, and can lead to increased susceptibility to HIV/AIDS and squamous cell carcinoma of the bladder. To complement available treatment programs and break the transmission of disease, sound knowledge and understanding of the biology and ecology of S. haematobium is required. Hybridisation/introgression events and molecular variation among members of the S. haematobium-group might effect important biological and/or disease traits as well as the morbidity of disease and the effectiveness of control programs including mass drug administration. Here we report the first chromosome-contiguous genome for a well-defined laboratory line of this blood fluke. An exploration of this genome using transcriptomic data for all key developmental stages allowed us to refine gene models (including non-coding elements) and annotations, discover 'new' genes and transcription profiles for these stages, likely linked to development and/or pathogenesis. Molecular variation within S. haematobium among some geographical locations in Africa revealed unique genomic 'signatures' that matched species other than S. haematobium, indicating the occurrence of introgression events. The present reference genome (designated Shae.V3) and the findings from this study solidly underpin future functional genomic and molecular investigations of S. haematobium and accelerate systematic, large-scale population genomics investigations, with a focus on improved and sustained control of urogenital schistosomiasis.
  • Item
    Thumbnail Image
    "Escalibur"-A practical pipeline for the de novo analysis of nucleotide variation in nonmodel eukaryotes
    Korhonen, PK ; Shaban, B ; Faux, NG ; Kinkar, L ; Chang, BCH ; Wang, D ; Yang, B ; Young, ND ; Gasser, RB (WILEY, 2022-07)
    The revolution in genomics has enabled large-scale population genetic investigations of a wide range of organisms, but there has been a relatively limited focus on improving analytical pipelines. To efficiently analyse large data sets, highly integrated and automated software pipelines, which are easy to use, efficient, reliable, reproducible and run in multiple computational environments, are required. A number of software workflows have been developed to handle and process such data sets for population genetic analyses, but effective, specialized pipelines for genetic and statistical analyses of nonmodel organisms are lacking. For most species, resources for variomes (sets of genetic variations found in populations of species) are not available, and/or genome assemblies are often incomplete and fragmented, complicating the selection of the most suitable reference genome when multiple assemblies are available. Additionally, the biological samples used often contain extraneous DNA from sources other than the species under investigation (e.g., microbial contamination), which needs to be removed prior to genetic analyses. For these reasons, we established a new pipeline, called Escalibur, which includes: functionalities, such as data trimming and mapping; selection of a suitable reference genome; removal of contaminating read data; recalibration of base calls; and variant-calling. Escalibur uses a proven gatk variant caller and workflow description language (WDL), and is, therefore, a highly efficient and scalable pipeline for the genome-wide identification of nucleotide variation in eukaryotes. This pipeline is available at https://gitlab.unimelb.edu.au/bioscience/escalibur (version 0.3-beta) and is essentially applicable to any prokaryote or eukaryote.
  • Item
    Thumbnail Image
    Chromosome-scale Echinococcus granulosus (genotype G1) genome reveals the Eg95 gene family and conservation of the EG95-vaccine molecule
    Korhonen, PK ; Kinkar, L ; Young, ND ; Cai, H ; Lightowlers, MW ; Gauci, C ; Jabbar, A ; Chang, BCH ; Wang, T ; Hofmann, A ; Koehler, A ; Li, J ; Li, J ; Wang, D ; Yin, J ; Yang, H ; Jenkins, DJ ; Saarma, U ; Laurimae, T ; Rostami-Nejad, M ; Irshadullah, M ; Mirhendi, H ; Sharbatkhori, M ; Ponce-Gordo, F ; Simsek, S ; Casulli, A ; Zait, H ; Atoyan, H ; de la Rue, ML ; Romig, T ; Wassermann, M ; Aghayan, SA ; Gevorgyan, H ; Yang, B ; Gasser, RB (NATURE PORTFOLIO, 2022-03-03)
    Cystic echinococcosis is a socioeconomically important parasitic disease caused by the larval stage of the canid tapeworm Echinococcus granulosus, afflicting millions of humans and animals worldwide. The development of a vaccine (called EG95) has been the most notable translational advance in the fight against this disease in animals. However, almost nothing is known about the genomic organisation/location of the family of genes encoding EG95 and related molecules, the extent of their conservation or their functions. The lack of a complete reference genome for E. granulosus genotype G1 has been a major obstacle to addressing these areas. Here, we assembled a chromosomal-scale genome for this genotype by scaffolding to a high quality genome for the congener E. multilocularis, localised Eg95 gene family members in this genome, and evaluated the conservation of the EG95 vaccine molecule. These results have marked implications for future explorations of aspects such as developmentally-regulated gene transcription/expression (using replicate samples) for all E. granulosus stages; structural and functional roles of non-coding genome regions; molecular 'cross-talk' between oncosphere and the immune system; and defining the precise function(s) of EG95. Applied aspects should include developing improved tools for the diagnosis and chemotherapy of cystic echinococcosis of humans.
  • Item
    No Preview Available
    High-quality reference genome for Clonorchis sinensis
    Young, ND ; Stroehlein, AJ ; Kinkar, L ; Wang, T ; Sohn, W-M ; Chang, BCH ; Kaur, P ; Weisz, D ; Dudchenko, O ; Aiden, EL ; Korhonen, PK ; Gasser, RB (ACADEMIC PRESS INC ELSEVIER SCIENCE, 2021-05)
    The Chinese liver fluke, Clonorchis sinensis, causes the disease clonorchiasis, affecting ~35 million people in regions of China, Vietnam, Korea and the Russian Far East. Chronic clonorchiasis causes cholangitis and can induce a malignant cancer, called cholangiocarcinoma, in the biliary system. Control in endemic regions is challenging, and often relies largely on chemotherapy with one anthelmintic, called praziquantel. Routine treatment carries a significant risk of inducing resistance to this anthelmintic in the fluke, such that the discovery of new interventions is considered important. It is hoped that the use of molecular technologies will assist this endeavour by enabling the identification of drug or vaccine targets involved in crucial biological processes and/or pathways in the parasite. Although draft genomes of C. sinensis have been published, their assemblies are fragmented. In the present study, we tackle this genome fragmentation issue by utilising, in an integrated way, advanced (second- and third-generation) DNA sequencing and informatic approaches to build a high-quality reference genome for C. sinensis, with chromosome-level contiguity and curated gene models. This substantially-enhanced genome provides a resource that could accelerate fundamental and applied molecular investigations of C. sinensis, clonorchiasis and/or cholangiocarcinoma, and assist in the discovery of new interventions against what is a highly significant, but neglected disease-complex.
  • Item
    Thumbnail Image
    Nanopore Sequencing Resolves Elusive Long Tandem-Repeat Regions in Mitochondrial Genomes
    Kinkar, L ; Gasser, RB ; Webster, BL ; Rollinson, D ; Littlewood, DTJ ; Chang, BCH ; Stroehlein, AJ ; Korhonen, PK ; Young, ND (MDPI, 2021-02)
    Long non-coding, tandem-repetitive regions in mitochondrial (mt) genomes of many metazoans have been notoriously difficult to characterise accurately using conventional sequencing methods. Here, we show how the use of a third-generation (long-read) sequencing and informatic approach can overcome this problem. We employed Oxford Nanopore technology to sequence genomic DNAs from a pool of adult worms of the carcinogenic parasite, Schistosoma haematobium, and used an informatic workflow to define the complete mt non-coding region(s). Using long-read data of high coverage, we defined six dominant mt genomes of 33.4 kb to 22.6 kb. Although no variation was detected in the order or lengths of the protein-coding genes, there was marked length (18.5 kb to 7.6 kb) and structural variation in the non-coding region, raising questions about the evolution and function of what might be a control region that regulates mt transcription and/or replication. The discovery here of the largest tandem-repetitive, non-coding region (18.5 kb) in a metazoan organism also raises a question about the completeness of some of the mt genomes of animals reported to date, and stimulates further explorations using a Nanopore-informatic workflow.