Veterinary Biosciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    Thumbnail Image
    Proteomic analysis of Sarcoptes scabiei reveals that proteins differentially expressed between eggs and female adult stages are involved predominantly in genetic information processing, metabolism and/or host-parasite interactions
    Wang, T ; Gasser, RB ; Korhonen, PK ; Young, ND ; Ang, C-S ; Williamson, NA ; Ma, G ; Samarawickrama, GR ; Fernando, DD ; Fischer, K ; Taylan Ozkan, A (PUBLIC LIBRARY SCIENCE, 2022-12)
    Presently, there is a dearth of proteomic data for parasitic mites and their relationship with the host animals. Here, using a high throughput LC-MS/MS-based approach, we undertook the first comprehensive, large-scale proteomic investigation of egg and adult female stages of the scabies mite, Sarcoptes scabiei-one of the most important parasitic mites of humans and other animals worldwide. In total, 1,761 S. scabiei proteins were identified and quantified with high confidence. Bioinformatic analyses revealed differentially expressed proteins to be involved predominantly in biological pathways or processes including genetic information processing, energy (oxidative phosphorylation), nucleotide, amino acid, carbohydrate and/or lipid metabolism, and some adaptive processes. Selected, constitutively and highly expressed proteins, such as peptidases, scabies mite inactivated protease paralogues (SMIPPs) and muscle proteins (myosin and troponin), are proposed to be involved in key biological processes within S. scabiei, host-parasite interactions and/or the pathogenesis of scabies. These proteomic data will enable future molecular, biochemical and physiological investigations of early developmental stages of S. scabiei and the discovery of novel interventions, targeting the egg stage, given its non-susceptibility to acaricides currently approved for the treatment of scabies in humans.
  • Item
    Thumbnail Image
    Evidence that Transcriptional Alterations in Sarcoptes scabiei Are under Tight Post-Transcriptional (microRNA) Control
    Korhonen, PK ; Wang, T ; Young, ND ; Samarawickrama, GR ; Fernando, DD ; Ma, G ; Gasser, RB ; Fischer, K (MDPI, 2022-09)
    Here, we explored transcriptomic differences among early egg (Ee), late egg (Le) and adult female (Af) stages of the scabies mite, Sarcoptes scabiei, using an integrative bioinformatic approach. We recorded a high, negative correlation between miRNAs and genes with decreased mRNA transcription between the developmental stages, indicating substantial post-transcriptional repression; we also showed a positive correlation between miRNAs and genes with increased mRNA transcription, suggesting indirect post-transcriptional regulation. The alterations in mRNA transcription between the egg and adult female stages of S. scabiei were inferred to be linked to metabolism (including carbohydrate and lipid degradation, amino acid and energy metabolism), environmental information processing (e.g., signal transduction and signalling molecules), genetic information processing (e.g., transcription and translation) and/or organismal systems. Taken together, these results provide insight into the transcription of this socioeconomically important parasitic mite, with a particular focus on the egg stage. This work encourages further, detailed laboratory studies of miRNA regulation across all developmental stages of S. scabiei and might assist in discovering new intervention targets in the egg stage of S. scabiei.
  • Item
    Thumbnail Image
    High-quality nuclear genome for Sarcoptes scabiei-A critical resource for a neglected parasite
    Korhonen, PK ; Gasser, RB ; Ma, G ; Wang, T ; Stroehlein, AJ ; Young, ND ; Ang, C-S ; Fernando, DD ; Lu, HC ; Taylor, S ; Reynolds, SL ; Mofiz, E ; Najaraj, SH ; Gowda, H ; Madugundu, A ; Renuse, S ; Holt, D ; Pandey, A ; Papenfuss, AT ; Fischer, K ; Ramos, AN (PUBLIC LIBRARY SCIENCE, 2020-10-01)
    The parasitic mite Sarcoptes scabiei is an economically highly significant parasite of the skin of humans and animals worldwide. In humans, this mite causes a neglected tropical disease (NTD), called scabies. This disease results in major morbidity, disability, stigma and poverty globally and is often associated with secondary bacterial infections. Currently, anti-scabies treatments are not sufficiently effective, resistance to them is emerging and no vaccine is available. Here, we report the first high-quality genome and transcriptomic data for S. scabiei. The genome is 56.6 Mb in size, has a a repeat content of 10.6% and codes for 9,174 proteins. We explored key molecules involved in development, reproduction, host-parasite interactions, immunity and disease. The enhanced ‘omic data sets for S. scabiei represent comprehensive and critical resources for genetic, functional genomic, metabolomic, phylogenetic, ecological and/or epidemiological investigations, and will underpin the design and development of new treatments, vaccines and/or diagnostic tests.