Veterinary Biosciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 9 of 9
  • Item
    Thumbnail Image
    Proteomic analysis of Sarcoptes scabiei reveals that proteins differentially expressed between eggs and female adult stages are involved predominantly in genetic information processing, metabolism and/or host-parasite interactions
    Wang, T ; Gasser, RB ; Korhonen, PK ; Young, ND ; Ang, C-S ; Williamson, NA ; Ma, G ; Samarawickrama, GR ; Fernando, DD ; Fischer, K ; Taylan Ozkan, A (PUBLIC LIBRARY SCIENCE, 2022-12)
    Presently, there is a dearth of proteomic data for parasitic mites and their relationship with the host animals. Here, using a high throughput LC-MS/MS-based approach, we undertook the first comprehensive, large-scale proteomic investigation of egg and adult female stages of the scabies mite, Sarcoptes scabiei-one of the most important parasitic mites of humans and other animals worldwide. In total, 1,761 S. scabiei proteins were identified and quantified with high confidence. Bioinformatic analyses revealed differentially expressed proteins to be involved predominantly in biological pathways or processes including genetic information processing, energy (oxidative phosphorylation), nucleotide, amino acid, carbohydrate and/or lipid metabolism, and some adaptive processes. Selected, constitutively and highly expressed proteins, such as peptidases, scabies mite inactivated protease paralogues (SMIPPs) and muscle proteins (myosin and troponin), are proposed to be involved in key biological processes within S. scabiei, host-parasite interactions and/or the pathogenesis of scabies. These proteomic data will enable future molecular, biochemical and physiological investigations of early developmental stages of S. scabiei and the discovery of novel interventions, targeting the egg stage, given its non-susceptibility to acaricides currently approved for the treatment of scabies in humans.
  • Item
    No Preview Available
    Ubiquitination pathway model for the barber's pole worm - Haemonchus contortus
    Zheng, Y ; Ma, G ; Wang, T ; Hofmann, A ; Song, J ; Gasser, RB ; Young, ND (ELSEVIER SCI LTD, 2022-08)
    The ubiquitin-mediated pathway has been comprehensively explored in the free-living nematode Caenorhabditis elegans, but very little is known about this pathway in parasitic nematodes. Here, we inferred the ubiquitination pathway for an economically significant and pathogenic nematode - Haemonchus contortus - using abundant resources available for C. elegans. We identified 215 genes encoding ubiquitin (Ub; n = 3 genes), ubiquitin-activating enzyme (E1; one), -conjugating enzymes (E2s; 21), ligases (E3s; 157) and deubiquitinating enzymes (DUBs; 33). With reference to C. elegans, Ub, E1 and E2 were relatively conserved in sequence and structure, and E3s and DUBs were divergent, likely reflecting functional and biological uniqueness in H. contortus. Most genes encoding ubiquitination pathway components exhibit high transcription in the egg compared with other stages, indicating marked protein homeostasis in this early developmental stage. The ubiquitination pathway model constructed for H. contortus provides a foundation to explore the ubiquitin-proteasome system, crosstalk between autophagy and the proteasome system, and the parasite-host interactions. Selected E3 and DUB proteins which are very divergent in sequence and structure from host homologues or entirely unique to H. contortus and related parasitic nematodes may represent possible anthelmintic targets.
  • Item
    Thumbnail Image
    Evidence that Transcriptional Alterations in Sarcoptes scabiei Are under Tight Post-Transcriptional (microRNA) Control
    Korhonen, PK ; Wang, T ; Young, ND ; Samarawickrama, GR ; Fernando, DD ; Ma, G ; Gasser, RB ; Fischer, K (MDPI, 2022-09)
    Here, we explored transcriptomic differences among early egg (Ee), late egg (Le) and adult female (Af) stages of the scabies mite, Sarcoptes scabiei, using an integrative bioinformatic approach. We recorded a high, negative correlation between miRNAs and genes with decreased mRNA transcription between the developmental stages, indicating substantial post-transcriptional repression; we also showed a positive correlation between miRNAs and genes with increased mRNA transcription, suggesting indirect post-transcriptional regulation. The alterations in mRNA transcription between the egg and adult female stages of S. scabiei were inferred to be linked to metabolism (including carbohydrate and lipid degradation, amino acid and energy metabolism), environmental information processing (e.g., signal transduction and signalling molecules), genetic information processing (e.g., transcription and translation) and/or organismal systems. Taken together, these results provide insight into the transcription of this socioeconomically important parasitic mite, with a particular focus on the egg stage. This work encourages further, detailed laboratory studies of miRNA regulation across all developmental stages of S. scabiei and might assist in discovering new intervention targets in the egg stage of S. scabiei.
  • Item
    Thumbnail Image
    Repurposing of a human antibody-based microarray to explore conserved components of the signalome of the parasitic nematode Haemonchus contortus
    Adderley, J ; Wang, T ; Ma, G ; Zheng, Y ; Young, ND ; Doerig, C ; Gasser, RB (BMC, 2022-07-30)
    BACKGROUND: Gaining insight into molecular signalling pathways of socioeconomically important parasitic nematodes has implications for understanding their molecular biology and for developing novel anthelmintic interventions. METHODS: Here, we evaluated the use of a human antibody-based microarray to explore conserved elements of the signalome in the barber's pole worm Haemonchus contortus. To do this, we prepared extracts from mixed-sex (female and male) adult worms and third-stage larvae (L3s), incubated these extracts on the antibody microarray and then measured the amounts of antibody-bound proteins ('signal intensity'). RESULTS: In total, 878 signals were classified into two distinct categories: signals that were higher for adults than for larvae of H. contortus (n = 376), and signals that were higher for larvae than for adults of this species (n = 502). Following a data-filtering step, high confidence ('specific') signals were obtained for subsequent analyses. In total, 39 pan-specific signals (linked to antibodies that recognise target proteins irrespective of their phosphorylation status) and 65 phosphorylation-specific signals were higher in the adult stage, and 82 pan-specific signals and 183 phosphorylation-specific signals were higher in L3s. Thus, notably more signals were higher in L3s than in the adult worms. Using publicly available information, we then inferred H. contortus proteins that were detected (with high confidence) by specific antibodies directed against human homologues, and revealed relatively high structural conservation between the two species, with some variability for select proteins. We also in silico-matched 763 compound structures (listed in the DrugBank and Kinase SARfari public databases) to four H. contortus proteins (designated HCON_00005760, HCON_00079680, HCON_00013590 and HCON_00105100). CONCLUSIONS: We conclude that the present antibody-based microarray provides a useful tool for comparative analyses of signalling pathways between/among developmental stages and/or species, as well as opportunities to explore nematocidal target candidates in H. contortus and related parasites.
  • Item
    Thumbnail Image
    Nuclear genome of Bulinus truncatus, an intermediate host of the carcinogenic human blood fluke Schistosoma haematobium
    Young, ND ; Stroehlein, AJ ; Wang, T ; Korhonen, PK ; Mentink-Kane, M ; Stothard, JR ; Rollinson, D ; Gasser, RB (NATURE PORTFOLIO, 2022-02-21)
    Some snails act as intermediate hosts (vectors) for parasitic flatworms (flukes) that cause neglected tropical diseases, such as schistosomiases. Schistosoma haematobium is a blood fluke that causes urogenital schistosomiasis and induces bladder cancer and increased risk of HIV infection. Understanding the molecular biology of the snail and its relationship with the parasite could guide development of an intervention approach that interrupts transmission. Here, we define the genome for a key intermediate host of S. haematobium-called Bulinus truncatus-and explore protein groups inferred to play an integral role in the snail's biology and its relationship with the schistosome parasite. Bu. truncatus shared many orthologous protein groups with Biomphalaria glabrata-the key snail vector for S. mansoni which causes hepatointestinal schistosomiasis in people. Conspicuous were expansions in signalling and membrane trafficking proteins, peptidases and their inhibitors as well as gene families linked to immune response regulation, such as a large repertoire of lectin-like molecules. This work provides a sound basis for further studies of snail-parasite interactions in the search for targets to block schistosomiasis transmission.
  • Item
    Thumbnail Image
    Chromosome-scale Echinococcus granulosus (genotype G1) genome reveals the Eg95 gene family and conservation of the EG95-vaccine molecule
    Korhonen, PK ; Kinkar, L ; Young, ND ; Cai, H ; Lightowlers, MW ; Gauci, C ; Jabbar, A ; Chang, BCH ; Wang, T ; Hofmann, A ; Koehler, A ; Li, J ; Li, J ; Wang, D ; Yin, J ; Yang, H ; Jenkins, DJ ; Saarma, U ; Laurimae, T ; Rostami-Nejad, M ; Irshadullah, M ; Mirhendi, H ; Sharbatkhori, M ; Ponce-Gordo, F ; Simsek, S ; Casulli, A ; Zait, H ; Atoyan, H ; de la Rue, ML ; Romig, T ; Wassermann, M ; Aghayan, SA ; Gevorgyan, H ; Yang, B ; Gasser, RB (NATURE PORTFOLIO, 2022-03-03)
    Cystic echinococcosis is a socioeconomically important parasitic disease caused by the larval stage of the canid tapeworm Echinococcus granulosus, afflicting millions of humans and animals worldwide. The development of a vaccine (called EG95) has been the most notable translational advance in the fight against this disease in animals. However, almost nothing is known about the genomic organisation/location of the family of genes encoding EG95 and related molecules, the extent of their conservation or their functions. The lack of a complete reference genome for E. granulosus genotype G1 has been a major obstacle to addressing these areas. Here, we assembled a chromosomal-scale genome for this genotype by scaffolding to a high quality genome for the congener E. multilocularis, localised Eg95 gene family members in this genome, and evaluated the conservation of the EG95 vaccine molecule. These results have marked implications for future explorations of aspects such as developmentally-regulated gene transcription/expression (using replicate samples) for all E. granulosus stages; structural and functional roles of non-coding genome regions; molecular 'cross-talk' between oncosphere and the immune system; and defining the precise function(s) of EG95. Applied aspects should include developing improved tools for the diagnosis and chemotherapy of cystic echinococcosis of humans.
  • Item
    No Preview Available
    High-quality reference genome for Clonorchis sinensis
    Young, ND ; Stroehlein, AJ ; Kinkar, L ; Wang, T ; Sohn, W-M ; Chang, BCH ; Kaur, P ; Weisz, D ; Dudchenko, O ; Aiden, EL ; Korhonen, PK ; Gasser, RB (ACADEMIC PRESS INC ELSEVIER SCIENCE, 2021-05)
    The Chinese liver fluke, Clonorchis sinensis, causes the disease clonorchiasis, affecting ~35 million people in regions of China, Vietnam, Korea and the Russian Far East. Chronic clonorchiasis causes cholangitis and can induce a malignant cancer, called cholangiocarcinoma, in the biliary system. Control in endemic regions is challenging, and often relies largely on chemotherapy with one anthelmintic, called praziquantel. Routine treatment carries a significant risk of inducing resistance to this anthelmintic in the fluke, such that the discovery of new interventions is considered important. It is hoped that the use of molecular technologies will assist this endeavour by enabling the identification of drug or vaccine targets involved in crucial biological processes and/or pathways in the parasite. Although draft genomes of C. sinensis have been published, their assemblies are fragmented. In the present study, we tackle this genome fragmentation issue by utilising, in an integrated way, advanced (second- and third-generation) DNA sequencing and informatic approaches to build a high-quality reference genome for C. sinensis, with chromosome-level contiguity and curated gene models. This substantially-enhanced genome provides a resource that could accelerate fundamental and applied molecular investigations of C. sinensis, clonorchiasis and/or cholangiocarcinoma, and assist in the discovery of new interventions against what is a highly significant, but neglected disease-complex.
  • Item
    Thumbnail Image
    High-quality nuclear genome for Sarcoptes scabiei-A critical resource for a neglected parasite
    Korhonen, PK ; Gasser, RB ; Ma, G ; Wang, T ; Stroehlein, AJ ; Young, ND ; Ang, C-S ; Fernando, DD ; Lu, HC ; Taylor, S ; Reynolds, SL ; Mofiz, E ; Najaraj, SH ; Gowda, H ; Madugundu, A ; Renuse, S ; Holt, D ; Pandey, A ; Papenfuss, AT ; Fischer, K ; Ramos, AN (PUBLIC LIBRARY SCIENCE, 2020-10-01)
    The parasitic mite Sarcoptes scabiei is an economically highly significant parasite of the skin of humans and animals worldwide. In humans, this mite causes a neglected tropical disease (NTD), called scabies. This disease results in major morbidity, disability, stigma and poverty globally and is often associated with secondary bacterial infections. Currently, anti-scabies treatments are not sufficiently effective, resistance to them is emerging and no vaccine is available. Here, we report the first high-quality genome and transcriptomic data for S. scabiei. The genome is 56.6 Mb in size, has a a repeat content of 10.6% and codes for 9,174 proteins. We explored key molecules involved in development, reproduction, host-parasite interactions, immunity and disease. The enhanced ‘omic data sets for S. scabiei represent comprehensive and critical resources for genetic, functional genomic, metabolomic, phylogenetic, ecological and/or epidemiological investigations, and will underpin the design and development of new treatments, vaccines and/or diagnostic tests.
  • Item
    Thumbnail Image
    Marked mitochondrial genetic variation in individuals and populations of the carcinogenic liver fluke Clonorchis sinensis
    Kinkar, L ; Korhonen, PK ; Wang, D ; Zhu, X-Q ; Chelomina, GN ; Wang, T ; Hall, RS ; Koehler, A ; Harliwong, I ; Yang, B ; Fink, JL ; Young, ND ; Gasser, RB ; Blair, D (PUBLIC LIBRARY SCIENCE, 2020-08)
    Clonorchiasis is a neglected tropical disease caused by the Chinese liver fluke, Clonorchis sinensis, and is often associated with a malignant form of bile duct cancer (cholangiocarcinoma). Although some aspects of the epidemiology of clonorchiasis are understood, little is known about the genetics of C. sinensis populations. Here, we conducted a comprehensive genetic exploration of C. sinensis from endemic geographic regions using complete mitochondrial protein gene sets. Genomic DNA samples from C. sinensis individuals (n = 183) collected from cats and dogs in China (provinces of Guangdong, Guangxi, Hunan, Heilongjiang and Jilin) as well as from rats infected with metacercariae from cyprinid fish from the Russian Far East (Primorsky Krai region) were deep sequenced using the BGISEQ-500 platform. Informatic analyses of mitochondrial protein gene data sets revealed marked genetic variation within C. sinensis; significant variation was identified within and among individual worms from distinct geographical locations. No clear affiliation with a particular location or host species was evident, suggesting a high rate of dispersal of the parasite across endemic regions. The present work provides a foundation for future biological, epidemiological and ecological studies using mitochondrial protein gene data sets, which could aid in elucidating associations between particular C. sinensis genotypes/haplotypes and the pathogenesis or severity of clonorchiasis and its complications (including cholangiocarcinoma) in humans.