Veterinary Biosciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 80
  • Item
    No Preview Available
    Marked genetic diversity within Blastocystis in Australian wildlife revealed using a next generation sequencing-phylogenetic approach
    Koehler, A ; Herath, HMPD ; Hall, RS ; Wilcox, S ; Gasser, RB (ELSEVIER, 2024-04)
    Blastocystis is a genus of intestinal stramenopiles that infect vertebrates, and may cause disease of the alimentary tract. Currently, at least 40 genotypes ("subtypes") of Blastocystis are recognised worldwide based on sequence data for the small subunit of the nuclear ribosomal RNA (SSU-rRNA) gene. Despite the numerous studies of Blastocystis worldwide, very few studies have explored Blastocystis in wild animals, particularly in Australia. Here, we used a PCR-based next generation sequencing (NGS)-phylogenetic approach to genetically characterise and classify Blastocystis variants from selected wildlife in the Australian state of Victoria. In total, 1658 faecal samples were collected from nine host species, including eastern grey kangaroo, swamp wallaby, common wombat, deer, European rabbit, canines and emu. Genomic DNA was extracted from these samples, a 500 bp region of the SSU-rRNA gene amplified by polymerase chain reaction (PCR) and, then, a subset of samples sequenced using Illumina technology. Primary PCR detected Blastocystis in 482 of the 1658 samples (29%), with the highest percentage in fallow deer (63%). Subsequent, Illumina-based sequencing of a subset of 356 samples revealed 55 distinct amplicon sequence variants (ASVs) representing seven currently-recognised subtypes (STs) [ST13 (prominent in marsupials), ST10, ST14, ST21, ST23, ST24 and ST25 (prominent in deer)] and two novel STs (ST45 and ST46) in marsupials. Mixed infections of different STs were observed in macropods, deer, emu and canids (fox, feral dog or dingo), but no infection was detected in rabbits or wombats. This study reveals marked genetic diversity within Blastocystis in a small number of species of wild animals in Australia, suggesting complexity in the genetic composition and transmission patterns of members of the genus Blastocystis in this country.
  • Item
    No Preview Available
    Genome-wide exploration reveals distinctive northern and southern variants of Clonorchis sinensis in the Far East
    Kinkar, L ; Korhonen, PK ; Saarma, U ; Wang, T ; Zhu, X-Q ; Harliwong, I ; Yang, B ; Fink, JL ; Wang, D ; Chang, BCH ; Chelomina, GN ; Koehler, AV ; Young, ND ; Gasser, RB (WILEY, 2023-05)
    Clonorchis sinensis is a carcinogenic liver fluke that causes clonorchiasis-a neglected tropical disease (NTD) affecting ~35 million people worldwide. No vaccine is available, and chemotherapy relies on one anthelmintic, praziquantel. This parasite has a complex life history and is known to infect a range of species of intermediate (freshwater snails and fish) and definitive (piscivorous) hosts. Despite this biological complexity and the impact of this biocarcinogenic pathogen, there has been no previous study of molecular variation in this parasite on a genome-wide scale. Here, we conducted the first extensive nuclear genomic exploration of C. sinensis individuals (n = 152) representing five distinct populations from mainland China, and one from Far East Russia, and revealed marked genetic variation within this species between "northern" and "southern" geographical regions. The discovery of this variation indicates the existence of biologically distinct variants within C. sinensis, which may have distinct epidemiology, pathogenicity and/or chemotherapic responsiveness. The detection of high heterozygosity within C. sinensis specimens suggests that this parasite has developed mechanisms to readily adapt to changing environments and/or host species during its life history/evolution. From an applied perspective, the identification of invariable genes could assist in finding new intervention targets in this parasite, given the major clinical relevance of clonorchiasis. From a technical perspective, the genomic-informatic workflow established herein will be readily applicable to a wide range of other parasites that cause NTDs.
  • Item
    No Preview Available
    A molecular characterization of marsupial filarioid nematodes of the genus Breinlia
    Koehler, A ; Beveridge, I ; Spratt, DM (CAMBRIDGE UNIV PRESS, 2023-01)
    Here we present the genetic relationships of 26 specimens of the genus Breinlia (Nematoda: Filarioidea) from a range of Australian marsupials using markers in the small subunit of nuclear ribosomal RNA and mitochondrial cytochrome c oxidase subunit 1 (cox1) genes and compare them with morphological determinations. The molecular data support the validity of most of the morpho-species included in the study and provide provisional insights into the phylogeny of the genus in Australian mammals, with dasyuroid marsupials appearing to be the original hosts. The recent discovery of Breinlia annulipapillata in the eye of a human brings this genus of parasites into the group of emerging infectious parasitic diseases.
  • Item
    Thumbnail Image
    Nanopore Sequencing Using the Full-Length 16S rRNA Gene for Detection of Blood-Borne Bacteria in Dogs Reveals a Novel Species of Hemotropic Mycoplasma
    Huggins, LG ; Colella, V ; Atapattu, U ; Koehler, A ; Traub, RJ ; Costa, M (AMER SOC MICROBIOLOGY, 2022-12-21)
    Dogs across the globe are afflicted by diverse blood- and vector-borne bacteria (VBB), many of which cause severe disease and can be fatal. Diagnosis of VBB infections can be challenging due to the low concentration of bacteria in the blood, the frequent occurrence of coinfections, and the wide range of known, emerging, and potentially novel VBB species encounterable. Therefore, there is a need for diagnostics that address these challenges by being both sensitive and capable of detecting all VBB simultaneously. We detail the first employment of a nanopore-based sequencing methodology conducted on the Oxford Nanopore Technologies (ONT) MinION device to accurately elucidate the "hemobacteriome" from canine blood through sequencing of the full-length 16S rRNA gene. We detected a diverse range of important canine VBB, including Ehrlichia canis, Anaplasma platys, Mycoplasma haemocanis, Bartonella clarridgeiae, "Candidatus Mycoplasma haematoparvum", a novel species of hemotropic mycoplasma, and Wolbachia endosymbionts of filarial worms, indicative of filariasis. Our nanopore-based protocol was equivalent in sensitivity to both quantitative PCR (qPCR) and Illumina sequencing when benchmarked against these methods, achieving high agreement as defined by the kappa statistics (k > 0.81) for three key VBB. Utilizing the ability of the ONT' MinION device to sequence long read lengths provides an excellent alternative diagnostic method by which the hemobacteriome can be accurately characterized to the species level in a way previously unachievable using short reads. We envision our method to be translatable to multiple contexts, such as the detection of VBB in other vertebrate hosts, including humans, while the small size of the MinION device is highly amenable to field use. IMPORTANCE Blood- and vector-borne bacteria (VBB) can cause severe pathology and even be lethal for dogs in many regions across the globe. Accurate characterization of all the bacterial pathogens infecting a canine host is critical, as coinfections are common and emerging and novel pathogens that may go undetected by traditional diagnostics frequently arise. Deep sequencing using devices from Oxford Nanopore Technologies (ONT) provides a solution, as the long read lengths achievable provide species-level taxonomic identification of pathogens that previous short-read technologies could not accomplish. We developed a protocol using ONT' MinION sequencer to accurately detect and classify a wide spectrum of VBB from canine blood at a sensitivity comparable to that of regularly used diagnostics, such as qPCR. This protocol demonstrates great potential for use in biosurveillance and biosecurity operations for the detection of VBB in a range of vertebrate hosts, while the MinION sequencer's portability allows this method to be used easily in the field.
  • Item
    Thumbnail Image
    Thermal proteome profiling reveals Haemonchus orphan protein HCO_011565 as a target of the nematocidal small molecule UMW-868
    Taki, ACC ; Wang, T ; Nguyen, NNN ; Ang, C-S ; Leeming, MGG ; Nie, S ; Byrne, JJJ ; Young, NDD ; Zheng, Y ; Ma, G ; Korhonen, PKK ; Koehler, AVV ; Williamson, NAA ; Hofmann, A ; Chang, BCH ; Haeberli, C ; Keiser, J ; Jabbar, A ; Sleebs, BEE ; Gasser, RBB (FRONTIERS MEDIA SA, 2022-10-14)
    Parasitic roundworms (nematodes) cause destructive diseases, and immense suffering in humans and other animals around the world. The control of these parasites relies heavily on anthelmintic therapy, but treatment failures and resistance to these drugs are widespread. As efforts to develop vaccines against parasitic nematodes have been largely unsuccessful, there is an increased focus on discovering new anthelmintic entities to combat drug resistant worms. Here, we employed thermal proteome profiling (TPP) to explore hit pharmacology and to support optimisation of a hit compound (UMW-868), identified in a high-throughput whole-worm, phenotypic screen. Using advanced structural prediction and docking tools, we inferred an entirely novel, parasite-specific target (HCO_011565) of this anthelmintic small molecule in the highly pathogenic, blood-feeding barber's pole worm, and in other socioeconomically important parasitic nematodes. The "hit-to-target" workflow constructed here provides a unique prospect of accelerating the simultaneous discovery of novel anthelmintics and associated parasite-specific targets.
  • Item
    Thumbnail Image
    Phylogenetic Relationships of the Strongyloid Nematodes of Australasian Marsupials Based on Mitochondrial Protein Sequences
    Sukee, T ; Beveridge, I ; Koehler, AV ; Hall, RS ; Gasser, RB ; Jabbar, A (MDPI, 2022-11)
    Australasian marsupials harbour a diverse group of gastrointestinal strongyloid nematodes. These nematodes are currently grouped into two subfamilies, namely the Cloacininae and Phascolostrongylinae. Based on morphological criteria, the Cloacininae and Phascolostrongylinae were defined as monophyletic and placed in the family Cloacinidae, but this has not been supported by molecular data and they are currently placed in the Chabertiidae. Although molecular data (internal transcribed spacers of the nuclear ribosomal RNA genes or mitochondrial protein-coding genes) have been used to verify morphological classifications within the Cloacininae and Phascolostrongylinae, the phylogenetic relationships between the subfamilies have not been rigorously tested. This study determined the phylogenetic relationships of the subfamilies Cloacininae and Phascolostrongylinae using amino acid sequences conceptually translated from the twelve concatenated mitochondrial protein-coding genes. The findings demonstrated that the Cloacininae and Phascolostrongylinae formed a well-supported monophyletic assemblage, consistent with their morphological classification as an independent family, Cloacinidae. Unexpectedly, however, the subfamily Phascolostrongylinae was split into two groups comprising the genera from macropodid hosts (kangaroos and wallabies) and those from vombatid hosts (wombats). Genera of the Cloacininae and Phascolostrongylinae occurring in macropodid hosts were more closely related compared to genera of the Phascolostrongylinae occurring in wombats that formed a sister relationship with the remaining genera from macropods. These findings provide molecular evidence supporting the monophyly of the family Cloacinidae and an alternative hypothesis for the origin of marsupial strongyloid nematodes in vombatid hosts that requires further exploration using molecular approaches and additional samples.
  • Item
    Thumbnail Image
    Speciation in the genus Cloacina (Nematoda: Strongylida): species flocks and intra-host speciation
    Chilton, NB ; Shuttleworth, MA ; Huby-Chilton, F ; Koehler, AV ; Jabbar, A ; Gasser, RB ; Beveridge, I (CAMBRIDGE UNIV PRESS, 2017-11)
    Sequences of the first and second internal transcribed spacers (ITS1 + ITS2) of nuclear ribosomal DNA were employed to determine whether the congeneric assemblages of species of the strongyloid nematode genus Cloacina, found in the forestomachs of individual species of kangaroos and wallabies (Marsupialia: Macropodidae), considered to represent species flocks, were monophyletic. Nematode assemblages examined in the black-striped wallaby, Macropus (Notamacropus) dorsalis, the wallaroos, Macropus (Osphranter) antilopinus/robustus, rock wallabies, Petrogale spp., the quokka, Setonix brachyurus, and the swamp wallaby, Wallabia bicolor, were not monophyletic and appeared to have arisen by host colonization. However, a number of instances of within-host speciation were detected, suggesting that a variety of methods of speciation have contributed to the evolution of the complex assemblages of species present in this genus.
  • Item
    Thumbnail Image
    Screening of a small, well-curated natural product-based library identifies two rotenoids with potent nematocidal activity against Haemonchus contortus
    Herath, HMPD ; Preston, S ; Hofmann, A ; Davis, RA ; Koehler, AV ; Chang, BCH ; Jabbar, A ; Gasser, RB (ELSEVIER SCIENCE BV, 2017-09-15)
    The control of parasitic roundworms (nematodes) is heavily reliant on the use of a limited number of anthelmintic drugs. However, drug resistance is now very widespread and no vaccines are available, such that the discovery of new chemical entities is crucial. Within this context, we screened a library of pure natural products (n=400) against exsheathed third-stage (xL3) larvae of the parasitic nematode Haemonchus contortus using a whole-organism screening method. We identified two plant-derived rotenoids, deguelin and rotenone, with inhibitory activity on xL3 motility. Rotenone was not investigated further, because of its toxicity to some vertebrates. The dose response and cytotoxicity studies showed potent and selective inhibitory activity of deguelin on motility of xL3 larvae of H. contortus. Detailed future work needs to be conducted to explore the mode of action of this compound on H. contortus and related nematodes, and to assess its potential as an anthelmintic candidate.
  • Item
    Thumbnail Image
    Genetic characterisation of Taenia multiceps cysts from ruminants in Greece
    Al-Riyami, S ; Ioannidou, E ; Koehler, AV ; Hussain, MH ; Al-Rawahi, AH ; Giadinis, ND ; Lafi, SQ ; Papadopoulos, E ; Jabbar, A (ELSEVIER, 2016-03)
    This study was designed to genetically characterise the larval stage (coenurus) of Taenia multiceps from ruminants in Greece, utilising DNA regions within the cytochrome c oxidase subunit 1 (partial cox1) and NADH dehydrogenase 1 (pnad1) mitochondrial (mt) genes, respectively. A molecular-phylogenetic approach was used to analyse the pcox1 and pnad1 amplicons derived from genomic DNA samples from individual cysts (n=105) from cattle (n=3), goats (n=5) and sheep (n=97). Results revealed five and six distinct electrophoretic profiles for pcox1 and pnad1, respectively, using single-strand conformation polymorphism. Direct sequencing of selected amplicons representing each of these profiles defined five haplotypes each for pcox1 and pnad1, among all 105 isolates. Phylogenetic analysis of individual sequence data for each locus, including a range of well-defined reference sequences, inferred that all isolates of T. multiceps cysts from ruminants in Greece clustered with previously published sequences from different continents. The present study provides a foundation for future large-scale studies on the epidemiology of T. multiceps in ruminants as well as dogs in Greece.
  • Item
    Thumbnail Image
    Chromosome-scale Echinococcus granulosus (genotype G1) genome reveals the Eg95 gene family and conservation of the EG95-vaccine molecule
    Korhonen, PK ; Kinkar, L ; Young, ND ; Cai, H ; Lightowlers, MW ; Gauci, C ; Jabbar, A ; Chang, BCH ; Wang, T ; Hofmann, A ; Koehler, A ; Li, J ; Li, J ; Wang, D ; Yin, J ; Yang, H ; Jenkins, DJ ; Saarma, U ; Laurimae, T ; Rostami-Nejad, M ; Irshadullah, M ; Mirhendi, H ; Sharbatkhori, M ; Ponce-Gordo, F ; Simsek, S ; Casulli, A ; Zait, H ; Atoyan, H ; de la Rue, ML ; Romig, T ; Wassermann, M ; Aghayan, SA ; Gevorgyan, H ; Yang, B ; Gasser, RB (NATURE PORTFOLIO, 2022-03-03)
    Cystic echinococcosis is a socioeconomically important parasitic disease caused by the larval stage of the canid tapeworm Echinococcus granulosus, afflicting millions of humans and animals worldwide. The development of a vaccine (called EG95) has been the most notable translational advance in the fight against this disease in animals. However, almost nothing is known about the genomic organisation/location of the family of genes encoding EG95 and related molecules, the extent of their conservation or their functions. The lack of a complete reference genome for E. granulosus genotype G1 has been a major obstacle to addressing these areas. Here, we assembled a chromosomal-scale genome for this genotype by scaffolding to a high quality genome for the congener E. multilocularis, localised Eg95 gene family members in this genome, and evaluated the conservation of the EG95 vaccine molecule. These results have marked implications for future explorations of aspects such as developmentally-regulated gene transcription/expression (using replicate samples) for all E. granulosus stages; structural and functional roles of non-coding genome regions; molecular 'cross-talk' between oncosphere and the immune system; and defining the precise function(s) of EG95. Applied aspects should include developing improved tools for the diagnosis and chemotherapy of cystic echinococcosis of humans.