Science Collected Works - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 16
  • Item
    Thumbnail Image
    Characterization of aerosols over the Great Barrier Reef: The influence of transported continental sources
    Chen, Z ; Schofield, R ; Rayner, P ; Zhang, T ; Liu, C ; Vincent, C ; Fiddes, S ; Ryan, RG ; Alroe, J ; Ristovski, ZD ; Humphries, RS ; Keywood, MD ; Ward, J ; Paton-Walsh, C ; Naylor, T ; Shu, X (ELSEVIER, 2019-11-10)
    The rapid environmental changes in Australia prompt a more thorough investigation of the influence of transportation, local emissions, and optical-chemical properties on aerosol production across the region. A month-long intensive measurement campaign was conducted during spring 2016 at Mission Beach, a remote coastal site west of the Great Barrier Reef (GBR) on the north-east coast of Australia. One aerosol pollution episode was investigated in early October. This event was governed by meteorological conditions and characterized by the increase in black carbon (BC) mass concentration (averaged value of 0.35 ± 0.20 μg m-3). Under the influence of the continental transportation, a new layer of nucleation-mode aerosols with an initial size diameter of 20 nm was observed and aerosol number concentrations reached the peak of 6733 cm-3 at a diameter of 29 nm. The averaged aerosol extinction coefficient at the height of 2 km was 150 Mm-1, with a small depolarized ratio (3.5-5%). Simultaneously, the boundary layer height presented a fall-rise trend in the presence of these enhanced aerosol concentrations and became stable in a later stage of the episode. We did not observe clear boundary layer height diurnal variations from the LiDAR observations or from the Weather Research and Forecasting (WRF) model outputs, except in an earlier stage of the aerosol episode for the former. Although the sea breeze may have been responsible for these particles, on the balance of available data, we suggest that the aerosol properties at the GBR surface during this period are more likely influenced by regional transportation of continental sources, including biomass-burning aerosols.
  • Item
    No Preview Available
    Evaluating the Relationship between Interannual Variations in the Antarctic Ozone Hole and Southern Hemisphere Surface Climate in Chemistry-Climate Models
    Gillett, ZE ; Arblaster, JM ; Dittus, AJ ; Deushi, M ; Joeckel, P ; Kinnison, DE ; Morgenstern, O ; Plummer, DA ; Revell, LE ; Rozanov, E ; Schofield, R ; Stenke, A ; Stone, KA ; Tilmes, S (AMER METEOROLOGICAL SOC, 2019-06-01)
    Studies have recently reported statistically significant relationships between observed year-to-year spring Antarctic ozone variability and the Southern Hemisphere annular mode and surface temperatures in spring–summer. This study investigates whether current chemistry–climate models (CCMs) can capture these relationships, in particular, the connection between November total column ozone (TCO) and Australian summer surface temperatures, where years with anomalously high TCO over the Antarctic polar cap tend to be followed by warmer summers. The interannual ozone–temperature teleconnection is examined over the historical period in the observations and simulations from the Whole Atmosphere Community Climate Model (WACCM) and nine other models participating in the Chemistry–Climate Model Initiative (CCMI). There is a systematic difference between the WACCM experiments forced with prescribed observed sea surface temperatures (SSTs) and those with an interactive ocean. Strong correlations between TCO and Australian temperatures are only obtained for the uncoupled experiment, suggesting that the SSTs could be important for driving both variations in Australian temperatures and the ozone hole, with no causal link between the two. Other CCMI models also tend to capture this relationship with more fidelity when driven by observed SSTs, although additional research and targeted modeling experiments are required to determine causality and further explore the role of model biases and observational uncertainty. The results indicate that CCMs can reproduce the relationship between spring ozone and summer Australian climate reported in observational studies, suggesting that incorporating ozone variability could improve seasonal predictions; however, more work is required to understand the difference between the coupled and uncoupled simulations.
  • Item
    Thumbnail Image
    Tropospheric ozone in CCMI models and Gaussian process emulation to understand biases in the SOCOLv3 chemistry-climate model
    Revell, LE ; Stenke, A ; Tummon, F ; Feinberg, A ; Rozanov, E ; Peter, T ; Abraham, NL ; Akiyoshi, H ; Archibald, AT ; Butchart, N ; Deushi, M ; Joeckel, P ; Kinnison, D ; Michou, M ; Morgenstern, O ; O'Connor, FM ; Oman, LD ; Pitari, G ; Plummer, DA ; Schofield, R ; Stone, K ; Tilmes, S ; Visioni, D ; Yamashita, Y ; Zeng, G (Copernicus Publications, 2018-11-13)
    Previous multi-model intercomparisons have shown that chemistry-climate models exhibit significant biases in tropospheric ozone compared with observations. We investigate annual-mean tropospheric column ozone in 15 models participating in the SPARC-IGAC (Stratosphere-troposphere Processes And their Role in Climate-International Global Atmospheric Chemistry) Chemistry-Climate Model Initiative (CCMI). These models exhibit a positive bias, on average, of up to 40 %-50 % in the Northern Hemisphere compared with observations derived from the Ozone Monitoring Instrument and Microwave Limb Sounder (OMI/MLS), and a negative bias of up to ∼ 30 % in the Southern Hemisphere. SOCOLv3.0 (version 3 of the Solar-Climate Ozone Links CCM), which participated in CCMI, simulates global-mean tropospheric ozone columns of 40.2 DU- A pproximately 33 % larger than the CCMI multi-model mean. Here we introduce an updated version of SOCOLv3.0, SOCOLv3.1, which includes an improved treatment of ozone sink processes, and results in a reduction in the tropospheric column ozone bias of up to 8 DU, mostly due to the inclusion of N2O5 hydrolysis on tropospheric aerosols. As a result of these developments, tropospheric column ozone amounts simulated by SOCOLv3.1 are comparable with several other CCMI models. We apply Gaussian process emulation and sensitivity analysis to understand the remaining ozone bias in SOCOLv3.1. This shows that ozone precursors (nitrogen oxides (NOx), carbon monoxide, methane and other volatile organic compounds, VOCs) are responsible for more than 90 % of the variance in tropospheric ozone. However, it may not be the emissions inventories themselves that result in the bias, but how the emissions are handled in SOCOLv3.1, and we discuss this in the wider context of the other CCMI models. Given that the emissions data set to be used for phase 6 of the Coupled Model Intercomparison Project includes approximately 20 % more NOx than the data set used for CCMI, further work is urgently needed to address the challenges of simulating sub-grid processes of importance to tropospheric ozone in the current generation of chemistry-climate models.
  • Item
    Thumbnail Image
    The influence of mixing on the stratospheric age of air changes in the 21st century
    Eichinger, R ; Dietmueller, S ; Garny, H ; Sacha, P ; Birner, T ; Boenisch, H ; Pitari, G ; Visioni, D ; Stenke, A ; Rozanov, E ; Revell, L ; Plummer, DA ; Joeckel, P ; Oman, L ; Deushi, M ; Kinnison, DE ; Garcia, R ; Morgenstern, O ; Zeng, G ; Stone, KA ; Schofield, R (COPERNICUS GESELLSCHAFT MBH, 2019-01-24)
    Climate models consistently predict an acceleration of the Brewer-Dobson circulation (BDC) due to climate change in the 21st century. However, the strength of this acceleration varies considerably among individual models, which constitutes a notable source of uncertainty for future climate projections. To shed more light upon the magnitude of this uncertainty and on its causes, we analyse the stratospheric mean age of air (AoA) of 10 climate projection simulations from the Chemistry-Climate Model Initiative phase 1 (CCMI-I), covering the period between 1960 and 2100. In agreement with previous multi-model studies, we find a large model spread in the magnitude of the AoA trend over the simulation period. Differences between future and past AoA are found to be predominantly due to differences in mixing (reduced aging by mixing and recirculation) rather than differences in residual mean transport. We furthermore analyse the mixing efficiency, a measure of the relative strength of mixing for given residual mean transport, which was previously hypothesised to be a model constant. Here, the mixing efficiency is found to vary not only across models, but also over time in all models. Changes in mixing efficiency are shown to be closely related to changes in AoA and quantified to roughly contribute 10 % to the long-term AoA decrease over the 21st century. Additionally, mixing efficiency variations are shown to considerably enhance model spread in AoA changes. To understand these mixing efficiency variations, we also present a consistent dynamical framework based on diffusive closure, which highlights the role of basic state potential vorticity gradients in controlling mixing efficiency and therefore aging by mixing.
  • Item
    No Preview Available
    Daytime HONO, NO2 and aerosol distributions from MAX-DOAS observations in Melbourne
    Ryan, RG ; Rhodes, S ; Tully, M ; Wilson, S ; Jones, N ; Friess, U ; Schofield, R (COPERNICUS GESELLSCHAFT MBH, 2018-10-02)
    Toxic nitrogen oxides produced by high temperature combustion are prevalent in urban environments, contributing to a significant health burden. Nitrogen oxides such as NO2 and HONO in pollution are important for hydroxyl radical (OH) production and overall oxidative capacity in urban environments; however, current mechanisms cannot explain high daytime levels of HONO observed in many urban and rural locations around the world. Here we present HONO, NO2 and aerosol extinction vertical distributions retrieved from multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements in suburban Melbourne, which are the first MAX-DOAS results from the Australian continent. Using the optimal estimation algorithm HEIPRO we show that vertical profiles for NO2 and HONO can be calculated with a low dependence on the retrieval forward model and a priori parameters, despite a lack of independent co-located aerosol or trace gas measurements. Between December 2016 and April 2017 average peak NO2 values of 8±2ppb indicated moderate traffic pollution levels, and high daytime peak values of HONO were frequently detected, averaging 220±30ppt in the middle of the day. HONO levels measured in Melbourne were typically lower than those recorded in the morning in other places around the world, indicating minimal overnight accumulation, but peaked in the middle of the day to be commensurate with midday concentrations in locations with much higher NO2 pollution. Regular midday peaks in the diurnal cycle of HONO surface concentrations have only previously been reported in rural locations. The HONO measured implies a daytime source term 1ppbh−1 above the predicted photostationary state (PSS) concentration and represents an OH radical source up to 4 times stronger than from ozone photolysis alone in the lowest 500m of the troposphere. The dependence of the high midday HONO levels on soil moisture, combined with the observed diurnal and vertical profiles, provides evidence for a strong photoactivated and ground-based daytime HONO source.
  • Item
    No Preview Available
    The Antarctic ozone hole during 2013
    Klekociuk, AR ; Krummel, PB ; Tully, MB ; Gies, HP ; Alexander, SP ; Fraser, PJ ; Henderson, SI ; Javorniczky, J ; Shanklin, JD ; Schofield, R ; Stone, KA (Australian Bureau of Meteorology, 2015-01-01)
    We review the 2013 Antarctic ozone hole, making use of various ground-based, in-situ and remotely-sensed ozone measurements, ground-based measurements of ultraviolet radiation and meteorological reanalyses. Based on analysis of 34 years of satellite records spanning 1979-2013 (which excludes 1995), we find that in terms of maximum area, minimum ozone level and total ozone deficit, the ozone hole in 2013 was typical of other years of moderate ozone loss. The estimated integrated ozone mass effectively depleted within the ozone hole of 2013 was approximately 1037 Mt, which was the 17th largest deficit on record and 41% of the peak deficit observed in 2006. Anomalously cold winter temper-atures in the lower stratosphere over Antarctica and concurrent strong and stable vortex conditions favoured the potential for strong ozone depletion in 2013. However, anomalous warming of the polar vortex that occurred from late Au-gust limited the overall severity of ozone depletion during spring, and resulted in the relatively early breakup of the ozone hole in mid-November.
  • Item
    No Preview Available
    Stratospheric ozone intrusion events and their impacts on tropospheric ozone in the Southern Hemisphere
    Greenslade, JW ; Alexander, SP ; Schofield, R ; Fisher, JA ; Klekociuk, AK (Copernicus Publications, 2017-09-01)
    Stratosphere-to-troposphere transport (STT) provides an important natural source of ozone to the upper troposphere, but the characteristics of STT events in the Southern Hemisphere extratropics and their contribution to the regional tropospheric ozone budget remain poorly constrained. Here, we develop a quantitative method to identify STT events from ozonesonde profiles. Using this method we estimate the seasonality of STT events and quantify the ozone transported across the tropopause over Davis (69°S, 2006–2013), Macquarie Island (54°S, 2004–2013), and Melbourne (38°S, 2004–2013). STT seasonality is determined by two distinct methods: a Fourier bandpass filter of the vertical ozone profile and an analysis of the Brunt–Väisälä frequency. Using a bandpass filter on 7–9 years of ozone profiles from each site provides clear detection of STT events, with maximum occurrences during summer and minimum during winter for all three sites. The majority of tropospheric ozone enhancements owing to STT events occur within 2.5 and 3km of the tropopause at Davis and Macquarie Island respectively. Events are more spread out at Melbourne, occurring frequently up to 6km from the tropopause. The mean fraction of total tropospheric ozone attributed to STT during STT events is  ∼ 1. 0–3. 5 % at each site; however, during individual events, over 10% of tropospheric ozone may be directly transported from the stratosphere. The cause of STTs is determined to be largely due to synoptic low-pressure frontal systems, determined using coincident ERA-Interim reanalysis meteorological data. Ozone enhancements can also be caused by biomass burning plumes transported from Africa and South America, which are apparent during austral winter and spring and are determined using satellite measurements of CO. To provide regional context for the ozonesonde observations, we use the GEOS-Chem chemical transport model, which is too coarsely resolved to distinguish STT events but is able to accurately simulate the seasonal cycle of tropospheric ozone columns over the three southern hemispheric sites. Combining the ozonesonde-derived STT event characteristics with the simulated tropospheric ozone columns from GEOS-Chem, we estimate STT ozone flux near the three sites and see austral summer dominated yearly amounts of between 5. 7 and 8. 7 × 1017 moleculescm−2a−1.
  • Item
    Thumbnail Image
    Stratospheric Injection of Brominated Very Short-Lived Substances: Aircraft Observations in the Western Pacific and Representation in Global Models
    Wales, PA ; Salawitch, RJ ; Nicely, JM ; Anderson, DC ; Canty, TP ; Baidar, S ; Dix, B ; Koenig, TK ; Volkamer, R ; Chen, D ; Huey, LG ; Tanner, DJ ; Cuevas, CA ; Fernandez, RP ; Kinnison, DE ; Lamarque, J-F ; Saiz-Lopez, A ; Atlas, EL ; Hall, SR ; Navarro, MA ; Pan, LL ; Schauffler, SM ; Stell, M ; Tilmes, S ; Ullmann, K ; Weinheimer, AJ ; Akiyoshi, H ; Chipperfield, MP ; Deushi, M ; Dhomse, SS ; Feng, W ; Graf, P ; Hossaini, R ; Joeckel, P ; Mancini, E ; Michou, M ; Morgenstern, O ; Oman, LD ; Pitari, G ; Plummer, DA ; Revell, LE ; Rozanov, E ; Saint-Martin, D ; Schofield, R ; Stenke, A ; Stone, KA ; Visioni, D ; Yamashita, Y ; Zeng, G (AMER GEOPHYSICAL UNION, 2018-05-27)
    We quantify the stratospheric injection of brominated very short‐lived substances (VSLS) based on aircraft observations acquired in winter 2014 above the Tropical Western Pacific during the CONvective TRansport of Active Species in the Tropics (CONTRAST) and the Airborne Tropical TRopopause EXperiment (ATTREX) campaigns. The overall contribution of VSLS to stratospheric bromine was determined to be 5.0 ± 2.1 ppt, in agreement with the 5 ± 3 ppt estimate provided in the 2014 World Meteorological Organization (WMO) Ozone Assessment report (WMO 2014), but with lower uncertainty. Measurements of organic bromine compounds, including VSLS, were analyzed using CFC‐11 as a reference stratospheric tracer. From this analysis, 2.9 ± 0.6 ppt of bromine enters the stratosphere via organic source gas injection of VSLS. This value is two times the mean bromine content of VSLS measured at the tropical tropopause, for regions outside of the Tropical Western Pacific, summarized in WMO 2014. A photochemical box model, constrained to CONTRAST observations, was used to estimate inorganic bromine from measurements of BrO collected by two instruments. The analysis indicates that 2.1 ± 2.1 ppt of bromine enters the stratosphere via inorganic product gas injection. We also examine the representation of brominated VSLS within 14 global models that participated in the Chemistry‐Climate Model Initiative. The representation of stratospheric bromine in these models generally lies within the range of our empirical estimate. Models that include explicit representations of VSLS compare better with bromine observations in the lower stratosphere than models that utilize longer‐lived chemicals as a surrogate for VSLS.
  • Item
    No Preview Available
    Review of the global models used within phase 1 of the Chemistry-Climate Model Initiative (CCMI)
    Morgenstern, O ; Hegglin, MI ; Rozanov, E ; O'Connor, FM ; Abraham, NL ; Akiyoshi, H ; Archibald, AT ; Bekki, S ; Butchart, N ; Chipperfield, MP ; Deushi, M ; Dhomse, SS ; Garcia, RR ; Hardiman, SC ; Horowitz, LW ; Joeckel, P ; Josse, B ; Kinnison, D ; Lin, M ; Mancini, E ; Manyin, ME ; Marchand, M ; Marecal, V ; Michou, M ; Oman, LD ; Pitari, G ; Plummer, DA ; Revell, LE ; Saint-Martin, D ; Schofield, R ; Stenke, A ; Stone, K ; Sudo, K ; Tanaka, TY ; Tilmes, S ; Yamashita, Y ; Yoshida, K ; Zeng, G (COPERNICUS GESELLSCHAFT MBH, 2017-02-13)
    We present an overview of state-of-the-art chemistry–climate and chemistry transport models that are used within phase 1 of the Chemistry–Climate Model Initiative (CCMI-1). The CCMI aims to conduct a detailed evaluation of participating models using process-oriented diagnostics derived from observations in order to gain confidence in the models' projections of the stratospheric ozone layer, tropospheric composition, air quality, where applicable global climate change, and the interactions between them. Interpretation of these diagnostics requires detailed knowledge of the radiative, chemical, dynamical, and physical processes incorporated in the models. Also an understanding of the degree to which CCMI-1 recommendations for simulations have been followed is necessary to understand model responses to anthropogenic and natural forcing and also to explain inter-model differences. This becomes even more important given the ongoing development and the ever-growing complexity of these models. This paper also provides an overview of the available CCMI-1 simulations with the aim of informing CCMI data users.
  • Item
    Thumbnail Image
    Quantifying the effect of mixing on the mean age of air in CCMVal-2 and CCMI-1 models
    Dietmueller, S ; Eichinger, R ; Garny, H ; Birner, T ; Boenisch, H ; Pitari, G ; Mancini, E ; Visioni, D ; Stenke, A ; Revell, L ; Rozanov, E ; Plummer, DA ; Scinocca, J ; Joeckel, P ; Oman, L ; Deushi, M ; Kiyotaka, S ; Kinnison, DE ; Garcia, R ; Morgenstern, O ; Zeng, G ; Stone, KA ; Schofield, R (Copernicus Publications, 2018-05-14)
    The stratospheric age of air (AoA) is a useful measure of the overall capabilities of a general circulation model (GCM) to simulate stratospheric transport. Previous studies have reported a large spread in the simulation of AoA by GCMs and coupled chemistry–climate models (CCMs). Compared to observational estimates, simulated AoA is mostly too low. Here we attempt to untangle the processes that lead to the AoA differences between the models and between models and observations. AoA is influenced by both mean transport by the residual circulation and two-way mixing; we quantify the effects of these processes using data from the CCM inter-comparison projects CCMVal-2 (Chemistry–Climate Model Validation Activity 2) and CCMI-1 (Chemistry–Climate Model Initiative, phase 1). Transport along the residual circulation is measured by the residual circulation transit time (RCTT). We interpret the difference between AoA and RCTT as additional aging by mixing. Aging by mixing thus includes mixing on both the resolved and subgrid scale. We find that the spread in AoA between the models is primarily caused by differences in the effects of mixing and only to some extent by differences in residual circulation strength. These effects are quantified by the mixing efficiency, a measure of the relative increase in AoA by mixing. The mixing efficiency varies strongly between the models from 0.24 to 1.02. We show that the mixing efficiency is not only controlled by horizontal mixing, but by vertical mixing and vertical diffusion as well. Possible causes for the differences in the models' mixing efficiencies are discussed. Differences in subgrid-scale mixing (including differences in advection schemes and model resolutions) likely contribute to the differences in mixing efficiency. However, differences in the relative contribution of resolved versus parameterized wave forcing do not appear to be related to differences in mixing efficiency or AoA.