Science Collected Works - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    European newts establish in Australia, marking the arrival of a new amphibian order
    Tingley, R ; Weeks, AR ; Weeks, AR ; Smart, AS ; van Rooyen, AR ; Woolnough, AP ; McCarthy, MA (Springe, 2015)
    We document the successful establishment of a European newt (Lissotriton vulgaris) in south-eastern Australia, the first recorded case of a caudate species establishing beyond its native geographic range in the southern hemisphere. Field surveys in south-eastern Australia detected L. vulgaris at six sites, including four sites where the species had been detected 15 months earlier. Larvae were detected at three sites. Individuals had identical NADH dehydrogenase subunit 2 and cytb mtDNA gene sequences, and comparisons with genetic data from the species' native range suggest that these individuals belong to the nominal subspecies L. v. vulgaris. Climatic conditions across much of southern Australia are similar to those experienced within the species' native range, suggesting scope for substantial range expansion. Lissotriton vulgaris had been available in the Australian pet trade for decades before it was declared a 'controlled pest animal' in 1997, and thus the invasion documented here likely originated via the release or escape of captive animals. Lissotriton vulgaris is the sole member of an entire taxonomic order to have established in Australia, and given the potential toxicity of this species, further work is needed to delimit its current range and identify potential biodiversity impacts. © 2014 Springer International Publishing Switzerland.
  • Item
    Thumbnail Image
    Environmental DNA sampling is more sensitive than a traditional survey technique for detecting an aquatic invader
    Smart, AS ; Tingley, R ; Weeks, AR ; van Rooyen, AR ; McCarthy, MA (WILEY, 2015-10-01)
    Effective management of alien species requires detecting populations in the early stages of invasion. Environmental DNA (eDNA) sampling can detect aquatic species at relatively low densities, but few studies have directly compared detection probabilities of eDNA sampling with those of traditional sampling methods. We compare the ability of a traditional sampling technique (bottle trapping) and eDNA to detect a recently established invader, the smooth newt Lissotriton vulgaris vulgaris, at seven field sites in Melbourne, Australia. Over a four-month period, per-trap detection probabilities ranged from 0.01 to 0.26 among sites where L. v. vulgaris was detected, whereas per-sample eDNA estimates were much higher (0.29-1.0). Detection probabilities of both methods varied temporally (across days and months), but temporal variation appeared to be uncorrelated between methods. Only estimates of spatial variation were strongly correlated across the two sampling techniques. Environmental variables (water depth, rainfall, ambient temperature) were not clearly correlated with detection probabilities estimated via trapping, whereas eDNA detection probabilities were negatively correlated with water depth, possibly reflecting higher eDNA concentrations at lower water levels. Our findings demonstrate that eDNA sampling can be an order of magnitude more sensitive than traditional methods, and illustrate that traditional- and eDNA-based surveys can provide independent information on species distributions when occupancy surveys are conducted over short timescales.