Science Collected Works - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 52
  • Item
    Thumbnail Image
    The transcriptional regulator CprK detects chlorination by combining direct and indirect readout mechanisms
    Kemp, LR ; Dunstan, MS ; Fisher, K ; Warwicker, J ; Leys, D (ROYAL SOC, 2013-04-19)
    The transcriptional regulator CprK controls the expression of the reductive dehalogenase CprA in organohalide-respiring bacteria. Desulfitobacterium hafniense CprA catalyses the reductive dechlorination of the terminal electron acceptor o-chlorophenol acetic acid, generating the phenol acetic acid product. It has been shown that CprK has ability to distinguish between the chlorinated CprA substrate and the de-halogenated end product, with an estimated an estimated 10(4)-fold difference in affinity. Using a green fluorescent protein GFPUV-based transcriptional reporter system, we establish that CprK can sense o-chlorophenol acetic acid at the nanomolar level, whereas phenol acetic acid leads to transcriptional activation only when approaching micromolar levels. A structure-activity relationship study, using a range of o-chlorophenol acetic-acid-related compounds and key CprK mutants, combined with pKa calculations on the effector binding site, suggests that the sensitive detection of chlorination is achieved through a combination of direct and indirect readout mechanisms. Both the physical presence of the bulky chloride substituent as well as the accompanying electronic effects lowering the inherent phenol pKa are required for high affinity. Indeed, transcriptional activation by CprK appears strictly dependent on establishing a phenolate-K133 salt bridge interaction, rather than on the presence of a halogen atom per se. As K133 is strictly conserved within the CprK family, our data suggest that physiological function and future applications in biosensing are probably restricted to phenolic compounds.
  • Item
    Thumbnail Image
    Visualization of poly(ADP-ribose) bound to PARG reveals inherent balance between exo- and endo-glycohydrolase activities
    Barkauskaite, E ; Brassington, A ; Tan, ES ; Warwicker, J ; Dunstan, MS ; Banos, B ; Lafite, P ; Ahel, M ; Mitchison, TJ ; Ahel, I ; Leys, D (NATURE PUBLISHING GROUP, 2013-08)
    Poly-ADP-ribosylation is a post-translational modification that regulates processes involved in genome stability. Breakdown of the poly(ADP-ribose) (PAR) polymer is catalysed by poly(ADP-ribose) glycohydrolase (PARG), whose endo-glycohydrolase activity generates PAR fragments. Here we present the crystal structure of PARG incorporating the PAR substrate. The two terminal ADP-ribose units of the polymeric substrate are bound in exo-mode. Biochemical and modelling studies reveal that PARG acts predominantly as an exo-glycohydrolase. This preference is linked to Phe902 (human numbering), which is responsible for low-affinity binding of the substrate in endo-mode. Our data reveal the mechanism of poly-ADP-ribosylation reversal, with ADP-ribose as the dominant product, and suggest that the release of apoptotic PAR fragments occurs at unusual PAR/PARG ratios.
  • Item
  • Item
    Thumbnail Image
    Effects of compression garments on recovery following intermittent exercise
    Pruscino, CL ; Halson, S ; Hargreaves, M (SPRINGER, 2013-06)
    The objective of the study was to examine the effects of wearing compression garments for 24 h post-exercise on the biochemical, physical and perceived recovery of highly trained athletes. Eight field hockey players completed a match simulation exercise protocol on two occasions separated by 4 weeks after which lower-limb compression garments (CG) or loose pants (CON) were worn for 24 h. Blood was collected pre-exercise and 1, 24 and 48 h post-exercise for IL-6, IL-1β, TNF-α, CRP and CK. Blood lactate was monitored throughout exercise and for 30 min after. A 5 counter-movement jump (5CMJ) and squat jump were performed and perceived soreness rated at pre-exercise and 1, 24 and 48 h post-exercise. Perceived recovery was assessed post-exercise using a questionnaire related to exercise readiness. Repeated measures ANOVA was used to assess changes in blood, perceptual and physical responses to recovery. CK and CRP were significantly elevated 24 h post-exercise in both conditions (p < 0.05). No significant differences were observed for TNF-α, IL1-β, IL-6 between treatments (p > 0.05). Power and force production in the 5CMJ was reduced and perceived soreness was highest at 1 h post-exercise (p < 0.05). Perceived recovery was lowest at 1 h post-exercise in both conditions (p < 0.01), whilst overall, perceived recovery was greater when CG were worn (p < 0.005). None of the blood or physical markers of recovery indicates any benefit of wearing compression garments post-exercise. However, muscle soreness and perceived recovery indicators suggest a psychological benefit may exist.
  • Item
    Thumbnail Image
    Generalizing Ribbons and the Twist of the Lattice Ribbon
    Dagrosa, E ; Owczarek, AL (SPRINGER, 2014-04)
  • Item
    Thumbnail Image
    Time-Symmetric Quantization in Spacetimes with Event Horizons
    Kobakhidze, A ; Rodd, N (SPRINGER/PLENUM PUBLISHERS, 2013-08)
  • Item
    No Preview Available
    An Essential Role for Katanin p80 and Microtubule Severing in Male Gamete Production
    O'Donnell, L ; Rhodes, D ; Smith, SJ ; Merriner, DJ ; Clark, BJ ; Borg, C ; Whittle, B ; O'Connor, AE ; Smith, LB ; McNally, FJ ; de Kretser, DM ; Goodnow, CC ; Ormandy, CJ ; Jamsai, D ; O'Bryan, MK ; Frankel, WN (PUBLIC LIBRARY SCIENCE, 2012-05)
    Katanin is an evolutionarily conserved microtubule-severing complex implicated in multiple aspects of microtubule dynamics. Katanin consists of a p60 severing enzyme and a p80 regulatory subunit. The p80 subunit is thought to regulate complex targeting and severing activity, but its precise role remains elusive. In lower-order species, the katanin complex has been shown to modulate mitotic and female meiotic spindle dynamics and flagella development. The in vivo function of katanin p80 in mammals is unknown. Here we show that katanin p80 is essential for male fertility. Specifically, through an analysis of a mouse loss-of-function allele (the Taily line), we demonstrate that katanin p80, most likely in association with p60, has an essential role in male meiotic spindle assembly and dissolution and the removal of midbody microtubules and, thus, cytokinesis. Katanin p80 also controls the formation, function, and dissolution of a microtubule structure intimately involved in defining sperm head shaping and sperm tail formation, the manchette, and plays a role in the formation of axoneme microtubules. Perturbed katanin p80 function, as evidenced in the Taily mouse, results in male sterility characterized by decreased sperm production, sperm with abnormal head shape, and a virtual absence of progressive motility. Collectively these data demonstrate that katanin p80 serves an essential and evolutionarily conserved role in several aspects of male germ cell development.
  • Item
    Thumbnail Image
    A Missense Mutation in the Transcription Factor ETV5 Leads to Sterility, Increased Embryonic and Perinatal Death, Postnatal Growth Restriction, Renal Asymmetry and Polydactyly in the Mouse
    Jamsai, D ; Clark, BJ ; Smith, SJ ; Whittle, B ; Goodnow, CC ; Ormandy, CJ ; O'Bryan, MK ; Clarke, H (PUBLIC LIBRARY SCIENCE, 2013-10-21)
    ETV5 (Ets variant gene 5) is a transcription factor that is required for fertility. In this study, we demonstrate that ETV5 plays additional roles in embryonic and postnatal developmental processes in the mouse. Through a genome-wide mouse mutagenesis approach, we generated a sterile mouse line that carried a nonsense mutation in exon 12 of the Etv5 gene. The mutation led to the conversion of lysine at position 412 into a premature termination codon (PTC) within the ETS DNA binding domain of the protein. We showed that the PTC-containing allele produced a highly unstable mRNA, which in turn resulted in an undetectable level of ETV5 protein. The Etv5 mutation resulted in male and female sterility as determined by breeding experiments. Mutant males were sterile due to a progressive loss of spermatogonia, which ultimately resulted in a Sertoli cell only phenotype by 8 week-of-age. Further, the ETV5 target genes Cxcr4 and Ccl9 were significantly down-regulated in mutant neonate testes. CXCR4 and CCL9 have been implicated in the maintenance and migration of spermatogonia, respectively. Moreover, the Etv5 mutation resulted in several developmental abnormalities including an increased incidence of embryonic and perinatal lethality, postnatal growth restriction, polydactyly and renal asymmetry. Thus, our data define a physiological role for ETV5 in many aspects of development including embryonic and perinatal survival, postnatal growth, limb patterning, kidney development and fertility.
  • Item
    Thumbnail Image
    Loss of the Nuclear Receptor Corepressor SLIRP Compromises Male Fertility
    Colley, SM ; Wintle, L ; Searles, R ; Russell, V ; Firman, RC ; Smith, S ; DeBoer, K ; Merriner, DJ ; Genevieve, B ; Bentel, JM ; Stuckey, BGA ; Phillips, MR ; Simmons, LW ; de Kretser, DM ; O'Bryan, MK ; Leedman, PJ ; He, B (PUBLIC LIBRARY SCIENCE, 2013-08-15)
    Nuclear receptors (NRs) and their coregulators play fundamental roles in initiating and directing gene expression influencing mammalian reproduction, development and metabolism. SRA stem Loop Interacting RNA-binding Protein (SLIRP) is a Steroid receptor RNA Activator (SRA) RNA-binding protein that is a potent repressor of NR activity. SLIRP is present in complexes associated with NR target genes in the nucleus; however, it is also abundant in mitochondria where it affects mitochondrial mRNA transcription and energy turnover. In further characterisation studies, we observed SLIRP protein in the testis where its localization pattern changes from mitochondrial in diploid cells to peri-acrosomal and the tail in mature sperm. To investigate the in vivo effects of SLIRP, we generated a SLIRP knockout (KO) mouse. This animal is viable, but sub-fertile. Specifically, when homozygous KO males are crossed with wild type (WT) females the resultant average litter size is reduced by approximately one third compared with those produced by WT males and females. Further, SLIRP KO mice produced significantly fewer progressively motile sperm than WT animals. Electron microscopy identified disruption of the mid-piece/annulus junction in homozygous KO sperm and altered mitochondrial morphology. In sum, our data implicates SLIRP in regulating male fertility, wherein its loss results in asthenozoospermia associated with compromised sperm structure and mitochondrial morphology.
  • Item
    Thumbnail Image
    RBM5 Is a Male Germ Cell Splicing Factor and Is Required for Spermatid Differentiation and Male Fertility
    O'Bryan, MK ; Clark, BJ ; McLaughlin, EA ; D'Sylva, RJ ; O'Donnell, L ; Wilce, JA ; Sutherland, J ; O'Connor, AE ; Whittle, B ; Goodnow, CC ; Ormandy, CJ ; Jamsai, D ; Barsh, GS (PUBLIC LIBRARY SCIENCE, 2013-07)
    Alternative splicing of precursor messenger RNA (pre-mRNA) is common in mammalian cells and enables the production of multiple gene products from a single gene, thus increasing transcriptome and proteome diversity. Disturbance of splicing regulation is associated with many human diseases; however, key splicing factors that control tissue-specific alternative splicing remain largely undefined. In an unbiased genetic screen for essential male fertility genes in the mouse, we identified the RNA binding protein RBM5 (RNA binding motif 5) as an essential regulator of haploid male germ cell pre-mRNA splicing and fertility. Mice carrying a missense mutation (R263P) in the second RNA recognition motif (RRM) of RBM5 exhibited spermatid differentiation arrest, germ cell sloughing and apoptosis, which ultimately led to azoospermia (no sperm in the ejaculate) and male sterility. Molecular modelling suggested that the R263P mutation resulted in compromised mRNA binding. Within the adult mouse testis, RBM5 localises to somatic and germ cells including spermatogonia, spermatocytes and round spermatids. Through the use of RNA pull down coupled with microarrays, we identified 11 round spermatid-expressed mRNAs as putative RBM5 targets. Importantly, the R263P mutation affected pre-mRNA splicing and resulted in a shift in the isoform ratios, or the production of novel spliced transcripts, of most targets. Microarray analysis of isolated round spermatids suggests that altered splicing of RBM5 target pre-mRNAs affected expression of genes in several pathways, including those implicated in germ cell adhesion, spermatid head shaping, and acrosome and tail formation. In summary, our findings reveal a critical role for RBM5 as a pre-mRNA splicing regulator in round spermatids and male fertility. Our findings also suggest that the second RRM of RBM5 is pivotal for appropriate pre-mRNA splicing.