Chemical and Biomolecular Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 29
  • Item
    Thumbnail Image
    The effect of pH on the fat and protein within cream cheese and their influence on textural and rheological properties
    Ong, L ; Pax, AP ; Ong, A ; Vongsvivut, J ; Tobin, MJ ; Kentish, SE ; Gras, SL (Elsevier BV, 2020-12-01)
    The effect of variation in acid gel pH during cream cheese production was investigated. The gel microstructure was denser and cheese texture firmer, as the pH decreased from pH 5.0 to pH 4.3, despite the viscoelasticity of these gels remaining similar during heating. Protein hydration and secondary structure appeared to be key factors affecting both cheese microstructure and properties. Proteins within the matrix appeared to swell at pH 5.0, leading to a larger corpuscular structure; greater β-turn structure was also observed by synchrotron-Fourier transform infrared (S-FTIR) microspectroscopy and the cheese was softer. A decrease in pH led to a denser microstructure with increased aggregated β-sheet structure and a firmer cheese. The higher whey protein loss at low pH likely contributed to increased cheese hardness. In summary, controlling the pH of acid gel is important, as this parameter affects proteins in the cheese, their secondary structure and the resulting cream cheese.
  • Item
    Thumbnail Image
    Design and characterization of casein-whey protein suspensions via the pH-temperature-route for application in extrusion-based 3D-Printing
    Daffner, K ; Vadodaria, S ; Ong, L ; Nöbel, S ; Gras, S ; Norton, I ; Mills, T (Elsevier BV, 2021-03)
    The current interest in individualized food through additive manufacturing has identified a need for more information on the formulation and printability of potential ingredients. Here, the effect of formulation parameters of casein–whey protein suspensions like the pH (4.8–5.4) as well as the casein content (8.0–12.0% (w/w)) mixed with whey protein (2.0–3.0% (w/w)) and the effect of pre-processing parameters including the denaturation of whey proteins (80 °C, 10 min; adjusted pH 6.55, 6.9 and 7.1) on the gel formation via the pH–temperature (T)-route was studied. Rheological measurements showed that the sol–gel transition temperature (G’ = 1 Pa) decreased and the aggregation rate of the casein–whey protein suspensions increased with increasing heating pH value. The aggregation rate was considered to be a key parameter predicting the printability of formulations. By exceeding a certain aggregation rate (250 Pa/10 K), casein–whey protein suspensions were found to be printable resulting in firm and stable gels.
  • Item
    Thumbnail Image
    Characterising the influence of milk fat towards an application for extrusion-based 3D-printing of casein-whey protein suspensions via the pH-temperature-route
    Daffner, K ; Ong, L ; Hanssen, E ; Gras, S ; Mills, T (ELSEVIER SCI LTD, 2021-09)
    This study presents the design and characterisation of casein−whey protein suspensions (8.0/10.0% (w/w) casein and 2.0/2.5% (w/w) whey protein) mixed with dairy fat (1.0, 2.5 and 5.0% (w/w) total fat) processed via the pH−temperature-route in preparation for 3D-printing. Mechanical treatment was applied to significantly decrease the particle size of the milk fat globules and increase surface area, creating small fat globules (<1 μm) covered with proteins, which could act as pseudo protein particles during gelation. Different proteins covered the fat globule surface after mechanical treatment, as a result of differences in the pH adjusted just prior to heating (6.55, 6.9 or 7.1). The protein-fat suspensions appeared similar by transmission electron cryogenic microscopy and the zeta-potential of all particles was unchanged by the heating pH, with a similar charge to the solution (~−20 mV) occurring after acidification (pH 4.8/5.0) at low temperatures (2 °C). A low heating pH (6.55) resulted in increased sol−gel transition temperatures (G՛ = 1 Pa) and a decreased rate of aggregation for protein−fat suspensions. A higher heating pH (6.9 and 7.1) caused an increased rate of aggregation (aggregation rate ≥ 250 Pa/10 K), resulting in materials more promising for application in extrusion-based printing. 3D-printing of formulations into small rectangles, inclusive of a sol−gel transition in a heated nozzle, was conducted to relate the aggregation rate towards printability.
  • Item
    Thumbnail Image
    Effects of shredding on the functionality, microstructure and proteolysis of low-moisture mozzarella cheese
    Pax, AP ; Ong, L ; Kentish, SE ; Gras, SL (ELSEVIER SCI LTD, 2021-06)
    Low-moisture mozzarella cheese (LMMC) is commonly shredded before packaging, however, the effects of shredding are not fully understood. Industrially-produced block and shredded LMMC were studied during 8 weeks of storage at 4 °C. Cheese shredded on 15 d and at 8 weeks of age, coated with microcrystalline cellulose and stored in a modified atmosphere (70% N₂ and 30% CO₂), had an altered microstructure after 8 weeks compared with vacuum-packed block cheese. In the latter case the fat formed a more dispersed phase. Proteolysis was higher in shredded samples and a higher level of two bacterial proteases was detected. Despite these differences, the meltability and stretchability of the block and shredded LMMC were similar. The microstructure and functionality of cheese shredded at 15 d and stored for a further 6 weeks was similar to cheese shredded at 8 weeks, suggesting there is a flexible period for performing cheese shredding processes.
  • Item
    Thumbnail Image
    Structure and functionality of almond proteins as a function of pH
    Devnani, B ; Ong, L ; Kentish, S ; Gras, SL (ELSEVIER, 2021-10)
    Almond proteins have potential utility in a range of food and beverages but it is not clear how pH affects protein structure and function. The behaviour of almond protein isolate was examined under conditions of neutral and acidic pH (pH 7 and 4). The isolate was highly soluble (70–80%) at either pH. An increase in acidity lead to protein unfolding, an increase in random coil structure and the appearance of lower molecular weight proteins due to acidic hydrolysis. These structural changes at pH 4 increased the capacity for foam formation and foam stability, increased viscosity and led to concentration and age dependent thickening. Gels, similar in strength but with distinct microstructures and properties were obtained following heating. At pH 7, a particulate type gel with an interconnected protein network was formed, while the gel at pH 4 had a dense continuous protein matrix. The gels differed in their susceptibility to chemical disruption, suggesting different underlying molecular interactions. The ability to alter protein structure and properties as a function of pH and heating could be used to broaden the application of almond proteins and develop a variety of food products, such as protein supplements and vegan alternatives to traditional products.
  • Item
    Thumbnail Image
    Effect of rennet on the composition, proteolysis and microstructure of reduced-fat Cheddar cheese during ripening
    Soodam, K ; Ong, L ; Powell, IB ; Kentish, SE ; Gras, SL (SPRINGER FRANCE, 2015-09)
  • Item
  • Item
    Thumbnail Image
    Differences in Hedonic Responses, Facial Expressions and Self-Reported Emotions of Consumers Using Commercial Yogurts: A Cross-Cultural Study
    Gupta, M ; Torrico, DD ; Hepworth, G ; Gras, SL ; Ong, L ; Cottrell, JJ ; Dunshea, FR (MDPI, 2021-06)
    Hedonic scale testing is a well-accepted methodology for assessing consumer perceptions but is compromised by variation in voluntary responses between cultures. Check-all-that-apply (CATA) methods using emotion terms or emojis and facial expression recognition (FER) are emerging as more powerful tools for consumer sensory testing as they may offer improved assessment of voluntary and involuntary responses, respectively. Therefore, this experiment compared traditional hedonic scale responses for overall liking to (1) CATA emotions, (2) CATA emojis and (3) FER. The experiment measured voluntary and involuntary responses from 62 participants of Asian (53%) versus Western (47%) origin, who consumed six divergent yogurt formulations (Greek, drinkable, soy, coconut, berry, cookies). The hedonic scales could discriminate between yogurt formulations but could not distinguish between responses across the cultural groups. Aversive responses to formulations were the easiest to characterize for all methods; the hedonic scale was the only method that could not characterize differences in cultural preferences, with CATA emojis displaying the highest level of discrimination. In conclusion, CATA methods, particularly the use of emojis, showed improved characterization of cross-cultural preferences of yogurt formulations compared to hedonic scales and FER.
  • Item
    Thumbnail Image
    Heat induced denaturation, aggregation and gelation of almond proteins in skim and full fat almond milk
    Devnani, B ; Ong, L ; Kentish, S ; Gras, S (Elsevier BV, 2020-09-30)
    The effect of thermal treatment (45-95 ⁰C for 30 minutes) on the structure of almond milk proteins was assessed, as the unfolding and association of these proteins in response to heat is not well understood. Above 55 ⁰C, protein surface hydrophobicity and particle size increased and alpha helical structure decreased, reducing the stability of skim or full fat milk. Fractal protein clusters were observed at 65-75 ⁰C and weakly flocculated gels with a continuous protein network occurred at 85-95 ⁰C, resulting in gels with high water holding capacity and a strength similar to dairy gels. The presence of almond fat increased gel strength but led to a more heterogenous microstructure, which may be improved by homogenisation. Elasticity could also be increased with protein concentration. This study improves our understanding of the heat stability of almond milk proteins and indicates their potential as a gelling ingredient for vegan and vegetarian products.
  • Item
    Thumbnail Image
    A proteomic characterization shows differences in the milk fat globule membrane of buffalo and bovine milk
    Nguyen, HTH ; Ong, L ; Hoque, A ; Kentish, SE ; Williamson, N ; Ang, C-S ; Gras, SL (Elsevier, 2017-09-01)
    The proteins of the milk fat globule membrane (MFGM) have a number of functions, such as the regulation of milk fat secretion and metabolism, the uptake and transportation of fatty acids in the intestine, and potential protection from bacterial or viral infection. While the proteome of the MFGM in bovine milk has been extensively characterized, knowledge of these proteins in buffalo milk is limited. In this study, a proteomic approach was used to characterize the proteome of the buffalo MFGM. Multiple extraction techniques were used to increase the number of proteins identified, while label free relative quantitative liquid chromatography tandem mass spectrometry was used for comparison between the buffalo and bovine MFGM proteomes. A total of 220 buffalo MFGM proteins and 234 bovine MFGM proteins were identified after being filtered from the initial dataset of 757 and 680 proteins, respectively. A sixfold higher concentration of xanthine oxidoreductase was identified per mass of buffalo MFGM protein extracted, together with significantly greater concentrations of platelet glycoprotein 4, heat shock cognate and calcineurin B homologous protein. The expression of xanthine oxidoreductase in the MFGM of buffalo milk, which can affect milk shelf-life and flavor, was confirmed by Western blot analysis and a heterogeneous distribution of this protein observed in situ on the surface of the MFGM. The high concentration of fat in buffalo milk, together with the differences in the MFGM proteome provide insights into the differences in nutritional profile, biological function and properties of these two milk products.