Chemical and Biomolecular Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 75
  • Item
    No Preview Available
    Development and validation of a hybrid model for prediction of viable cell density, titer and cumulative glucose consumption in a mammalian cell culture system
    Yatipanthalawa, BS ; Wallace Fitzsimons, SE ; Horning, T ; Lee, YY ; Gras, SL (Elsevier BV, 2024-05-01)
  • Item
    Thumbnail Image
    Experimental investigation, numerical simulation and RSM modelling of the freezing and thawing of Mozzarella cheese
    Golzarijalal, M ; Ong, L ; Harvie, DJE ; Gras, SL (Elsevier, 2024-01)
    Freezing can be used to preserve functionality of Mozzarella cheese allowing export to distant markets but limited tools are available for prediction of freezing and thawing times as a function of composition and processing variables. Freezing and thawing processes were experimentally and numerically assessed for six Mozzarella samples, differing significantly in block size and composition. Numerical simulations using an enthalpy method were developed to build a validated and robust model for solving heat and mass transfer equations. A decrease in salt (NaCl) content from 1.34 % w/w to 0.07 % significantly altered the temperature of phase change from ∼–4.5 °C to –3 °C. Simulations showed minimal impact of salt migration on the salt in free moisture content deeper than ∼1–2 centimeters from the surface during freezing, with a slight increase of 8–10 % salt in free moisture at the block center. A response surface methodology (RSM) model was fit to the simulated data providing a useful tool for predicting freezing and thawing times for block sizes and a wider range of operating conditions enabling future process optimization. The RSM model indicated that increased salt content increased freezing time but decreased thawing time.
  • Item
    Thumbnail Image
    Machine learning for the prediction of proteolysis in Mozzarella and Cheddar cheese
    Golzarijalal, M ; Ong, L ; Neoh, CR ; Harvie, DJE ; Gras, SL (Elsevier, 2024-03)
    Proteolysis is a complex biochemical event during cheese storage that affects both functionality and quality, yet there are few tools that can accurately predict proteolysis for Mozzarella and Cheddar cheese across a range of parameters and storage conditions. Machine learning models were developed with input features from the literature. A gradient boosting method outperformed random forest and support vector regression methods in predicting proteolysis for both Mozzarella (R2 = 92%) and Cheddar (R2 = 97%) cheese. Storage time was the most important input feature for both cheese types, followed by coagulating enzyme concentration and calcium content for Mozzarella cheese and fat or moisture content for Cheddar cheese. The ability to predict proteolysis could be useful for manufacturers, assisting in inventory management to ensure optimum Mozzarella functionality and Cheddar with a desired taste, flavor and texture; this approach may also be extended to other types of cheese.
  • Item
    Thumbnail Image
    Application of mechanistic modelling in membrane and fiber chromatography for purification of biotherapeutics - A review
    Qu, Y ; Baker, I ; Black, J ; Fabri, L ; Gras, SL ; Lenhoff, AM ; Kentish, SE (ELSEVIER, 2024-02-08)
    Mechanistic modelling is a simulation tool which has been effectively applied in downstream bioprocessing to model resin chromatography. Membrane and fiber chromatography are newer approaches that offer higher rates of mass transfer and consequently higher flow rates and reduced processing times. This review describes the key considerations in the development of mechanistic models for these unit operations. Mass transfer is less complex than in resin columns, but internal housing volumes can make modelling difficult, particularly for laboratory-scale devices. Flow paths are often non-linear and the dead volume is often a larger fraction of the overall volume, which may require more complex hydrodynamic models to capture residence time distributions accurately. In this respect, the combination of computational fluid dynamics with appropriate protein binding models is emerging as an ideal approach.
  • Item
    Thumbnail Image
    Predictive models for upstream mammalian cell culture development: a review
    Yatipanthalawa, BS ; Gras, SL (Elsevier BV, 2024-03)
    The production of therapeutic proteins in mammalian cell culture is an essential unit operation in biopharmaceutical manufacture that can benefit from the predictive insights of effective process models, leading to accelerated process development and improved process control. This review outlines and evaluates current approaches to predictive model development for mammalian cell culture and protein production. Classical mechanistic and data driven approaches are analysed, together with potential challenges in model development and application, including the experimental requirements for parameter estimation. Hybrid models, which may offer greater robustness, are then explored along with hybrid model architecture and the steps involved in model development. Successful examples from other cell fermentation processes are also considered, for application to the development, monitoring and control of mammalian processes.
  • Item
    No Preview Available
    Influence of yeast growth conditions and proteolytic enzymes on the amino acid profiles of yeast hydrolysates: Implications for taste and nutrition
    Sirisena, S ; Chan, S ; Roberts, N ; Dal Maso, S ; Gras, SL ; Martin, GJO (ELSEVIER SCI LTD, 2024-03-30)
    This study investigated the effects of aerobic and anaerobic growth and proteolytic enzymes on the amino acid content of yeast hydrolysates in relation to taste and nutrition. Saccharomyces cerevisiae ATCC5574 was grown under fed-batch aerobic or batch anaerobic conditions. Intracellular glutamic acid (Glu) concentrations were 18-fold higher in aerobic yeast. Hydrolysis with papain and alkaline protease released more amino acids (AA) than simple autolysis or hydrolysis with bromelain, most significantly when applied to aerobic yeast (∼2-fold increase). Autolysates and bromelain hydrolysates from aerobic yeast had low levels of bitter and essential AAs, with high levels of umami Glu. Papain and alkaline protease hydrolysates of aerobic yeast had high levels of umami, bitter and essential AAs. Autolysates/hydrolysates from anaerobic yeast had moderate, high, and low levels of bitter, essential and umami AAs. Selection of both yeast growth conditions and hydrolysis enzyme can manipulate the free AA profile and yield of hydrolysates.
  • Item
    No Preview Available
    The Transition from Resin Chromatography to Membrane Adsorbers for Protein Separations at Industrial Scale
    Qu, Y ; Bekard, I ; Hunt, B ; Black, J ; Fabri, L ; Gras, SLL ; Kentish, SEE (TAYLOR & FRANCIS INC, 2023-01-01)
  • Item
    No Preview Available
    Economic optimization of antibody capture through Protein A affinity nanofiber chromatography
    Qu, Y ; Bekard, I ; Hunt, B ; Black, J ; Fabri, L ; Gras, SL ; Kentish, SE (ELSEVIER, 2024-01)
  • Item
    Thumbnail Image
    The effect of pH on the fat and protein within cream cheese and their influence on textural and rheological properties
    Ong, L ; Pax, AP ; Ong, A ; Vongsvivut, J ; Tobin, MJ ; Kentish, SE ; Gras, SL (Elsevier BV, 2020-12-01)
    The effect of variation in acid gel pH during cream cheese production was investigated. The gel microstructure was denser and cheese texture firmer, as the pH decreased from pH 5.0 to pH 4.3, despite the viscoelasticity of these gels remaining similar during heating. Protein hydration and secondary structure appeared to be key factors affecting both cheese microstructure and properties. Proteins within the matrix appeared to swell at pH 5.0, leading to a larger corpuscular structure; greater β-turn structure was also observed by synchrotron-Fourier transform infrared (S-FTIR) microspectroscopy and the cheese was softer. A decrease in pH led to a denser microstructure with increased aggregated β-sheet structure and a firmer cheese. The higher whey protein loss at low pH likely contributed to increased cheese hardness. In summary, controlling the pH of acid gel is important, as this parameter affects proteins in the cheese, their secondary structure and the resulting cream cheese.
  • Item
    Thumbnail Image
    Design and characterization of casein-whey protein suspensions via the pH-temperature-route for application in extrusion-based 3D-Printing
    Daffner, K ; Vadodaria, S ; Ong, L ; Nöbel, S ; Gras, S ; Norton, I ; Mills, T (Elsevier BV, 2021-03)
    The current interest in individualized food through additive manufacturing has identified a need for more information on the formulation and printability of potential ingredients. Here, the effect of formulation parameters of casein–whey protein suspensions like the pH (4.8–5.4) as well as the casein content (8.0–12.0% (w/w)) mixed with whey protein (2.0–3.0% (w/w)) and the effect of pre-processing parameters including the denaturation of whey proteins (80 °C, 10 min; adjusted pH 6.55, 6.9 and 7.1) on the gel formation via the pH–temperature (T)-route was studied. Rheological measurements showed that the sol–gel transition temperature (G’ = 1 Pa) decreased and the aggregation rate of the casein–whey protein suspensions increased with increasing heating pH value. The aggregation rate was considered to be a key parameter predicting the printability of formulations. By exceeding a certain aggregation rate (250 Pa/10 K), casein–whey protein suspensions were found to be printable resulting in firm and stable gels.