Chemical and Biomolecular Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 19
  • Item
    No Preview Available
    Gold Nanorod-Melanin Hybrids for Enhanced and Prolonged Photoacoustic Imaging in the Near-Infrared-II Window
    Yim, W ; Zhou, J ; Mantri, Y ; Creyer, MN ; Moore, CA ; Jokerst, J (AMER CHEMICAL SOC, 2021-04-07)
    Photoacoustic (PA) imaging holds great promise as a noninvasive imaging modality. Gold nanorods (GNRs) with absorption in the second near-infrared (NIR-II) window have emerged as excellent PA probes because of their tunable optical absorption, surface modifiability, and low toxicity. However, pristine GNRs often undergo shape transition upon laser illumination due to thermodynamic instability, leading to a reduced PA signal after a few seconds of imaging. Here, we report monodisperse GNR-melanin nanohybrids where a tunable polydopamine (PDA) coating was conformally coated on GNRs. GNR@PDAs showed a threefold higher PA signal than pristine GNRs due to the increased optical absorption, cross-sectional area, and thermal confinement. More importantly, the PA signal of GNR@PDAs only decreased by 29% during the 5 min of laser illumination in the NIR-II window, while significant attenuation (77%) was observed for GNRs. The GNR@PDAs maintained 87% of its original PA signal in vivo even after 10 min of laser illumination. This PDA-enabled strategy affords a rational design for robust PA imaging probes and provides more opportunities for other types of photomediated biomedicines, such as photothermal and photodynamic regimens.
  • Item
    No Preview Available
    Phenolic-enabled nanotechnology: versatile particle engineering for biomedicine
    Wu, D ; Zhou, J ; Creyer, MN ; Yim, W ; Chen, Z ; Messersmith, PB ; Jokerst, JV (ROYAL SOC CHEMISTRY, 2021-04-07)
    Phenolics are ubiquitous in nature and have gained immense research attention because of their unique physiochemical properties and widespread industrial use. In recent decades, their accessibility, versatile reactivity, and relative biocompatibility have catalysed research in phenolic-enabled nanotechnology (PEN) particularly for biomedical applications which have been a major benefactor of this emergence, as largely demonstrated by polydopamine and polyphenols. Therefore, it is imperative to overveiw the fundamental mechanisms and synthetic strategies of PEN for state-of-the-art biomedical applications and provide a timely and comprehensive summary. In this review, we will focus on the principles and strategies involved in PEN and summarize the use of the PEN synthetic toolkit for particle engineering and the bottom-up synthesis of nanohybrid materials. Specifically, we will discuss the attractive forces between phenolics and complementary structural motifs in confined particle systems to synthesize high-quality products with controllable size, shape, composition, as well as surface chemistry and function. Additionally, phenolic's numerous applications in biosensing, bioimaging, and disease treatment will be highlighted. This review aims to provide guidelines for new scientists in the field and serve as an up-to-date compilation of what has been achieved in this area, while offering expert perspectives on PEN's use in translational research.
  • Item
    Thumbnail Image
    Luminescent Metal-Phenolic Networks for Multicolor Particle Labeling
    Lin, Z ; Zhou, J ; Qu, Y ; Pan, S ; Han, Y ; Lafleur, RPM ; Chen, J ; Cortez-Jugo, C ; Richardson, JJ ; Caruso, F (WILEY-V C H VERLAG GMBH, 2021-11-15)
    The development of fluorescence labeling techniques has attracted widespread interest in various fields, including biomedical science as it can facilitate high-resolution imaging and the spatiotemporal understanding of various biological processes. We report a supramolecular fluorescence labeling strategy using luminescent metal-phenolic networks (MPNs) constructed from metal ions, phenolic ligands, and common and commercially available dyes. The rapid labeling process (<5 min) produces ultrathin coatings (≈10 nm) on diverse particles (e.g., organic, inorganic, and biological entities) with customized luminescence (e.g., red, blue, multichromatic, and white light) simply through the selection of fluorophores. The fluorescent coatings are stable at pH values from 1 to 8 and in complex biological media owing to the dominant π interactions between the dyes and MPNs. These coatings exhibit negligible cytotoxicity and their strong fluorescence is retained even when internalized into intracellular compartments. This strategy is expected to provide a versatile approach for fluorescence labeling with potential in diverse fields across the physical and life sciences.
  • Item
    Thumbnail Image
    Robust and Versatile Coatings Engineered via Simultaneous Covalent and Noncovalent Interactions
    Zhou, J ; Penna, M ; Lin, Z ; Han, Y ; Lafleur, RPM ; Qu, Y ; Richardson, JJ ; Yarovsky, I ; Jokerst, JV ; Caruso, F (WILEY-V C H VERLAG GMBH, 2021-09-06)
    Interfacial modular assembly has emerged as an adaptable strategy for engineering the surface properties of substrates in biomedicine, photonics, and catalysis. Herein, we report a versatile and robust coating (pBDT-TA), self-assembled from tannic acid (TA) and a self-polymerizing aromatic dithiol (i.e., benzene-1,4-dithiol, BDT), that can be engineered on diverse substrates with a precisely tuned thickness (5-40 nm) by varying the concentration of BDT used. The pBDT-TA coating is stabilized by covalent (disulfide) bonds and supramolecular (π-π) interactions, endowing the coating with high stability in various harsh aqueous environments across ionic strength, pH, temperature (e.g., 100 mM NaCl, HCl (pH 1) or NaOH (pH 13), and water at 100 °C), as well as surfactant solution (e.g., 100 mM Triton X-100) and biological buffer (e.g., Dulbecco's phosphate-buffered saline), as validated by experiments and simulations. Moreover, the reported pBDT-TA coating enables secondary reactions on the coating for engineering hybrid adlayers (e.g., ZIF-8 shells) via phenolic-mediated adhesion, and the facile integration of aromatic fluorescent dyes (e.g., rhodamine B) via π interactions without requiring elaborate synthetic processes.
  • Item
    Thumbnail Image
    Stereoselective Growth of Small Molecule Patches on Nanoparticles
    Zhou, J ; Creyer, MN ; Chen, A ; Yim, W ; Lafleur, RPM ; He, T ; Lin, Z ; Xu, M ; Abbasi, P ; Wu, J ; Pascal, TA ; Caruso, F ; Jokerst, JV (AMER CHEMICAL SOC, 2021-08-11)
    Patchy nanoparticles featuring tunable surface domains with spatial and chemical specificity are of fundamental interest, especially for creating three-dimensional (3D) colloidal structures. Guided assembly and regioselective conjugation of polymers have been widely used to manipulate such topography on nanoparticles; however, the processes require presynthesized specialized polymer chains and elaborate assembly conditions. Here, we show how small molecules can form 3D patches in aqueous environments in a single step. The patch features (e.g., size, number, conformation, and stereoselectivity) are modulated by a self-polymerizable aromatic dithiol and comixed ligands, which indicates an autonomous assembly mechanism involving covalent polymerization and supramolecular assembly. Moreover, this method is independent of the underlying nanoparticle material and dimension, offering a streamlined and powerful toolset to design heterogeneous patches on the nanoscale.
  • Item
    Thumbnail Image
    Influence of Poly(ethylene glycol) Molecular Architecture on Particle Assembly and Ex Vivo Particle-Immune Cell Interactions in Human Blood
    Song, J ; Ju, Y ; Amarasena, TH ; Lin, Z ; Mettu, S ; Zhou, J ; Rahim, MA ; Ang, C-S ; Cortez-Jugo, C ; Kent, SJ ; Caruso, F (AMER CHEMICAL SOC, 2021-06-22)
    Poly(ethylene glycol) (PEG) is widely used in particle assembly to impart biocompatibility and stealth-like properties in vivo for diverse biomedical applications. Previous studies have examined the effect of PEG molecular weight and PEG coating density on the biological fate of various particles; however, there are few studies that detail the fundamental role of PEG molecular architecture in particle engineering and bio-nano interactions. Herein, we engineered PEG particles using a mesoporous silica (MS) templating method and investigated how the PEG building block architecture impacted the physicochemical properties (e.g., surface chemistry and mechanical characteristics) of the PEG particles and subsequently modulated particle-immune cell interactions in human blood. Varying the PEG architecture from 3-arm to 4-arm, 6-arm, and 8-arm generated PEG particles with a denser, stiffer structure, with increasing elastic modulus from 1.5 to 14.9 kPa, inducing an increasing level of immune cell association (from 15% for 3-arm to 45% for 8-arm) with monocytes. In contrast, the precursor PEG particles with the template intact (MS@PEG) were stiffer and generally displayed higher levels of immune cell association but showed the opposite trend-immune cell association decreased with increasing PEG arm numbers. Proteomics analysis demonstrated that the biomolecular corona that formed on the PEG particles minimally influenced particle-immune cell interactions, whereas the MS@PEG particle-cell interactions correlated with the composition of the corona that was abundant in histidine-rich glycoproteins. Our work highlights the role of PEG architecture in the design of stealth PEG-based particles, thus providing a link between the synthetic nature of particles and their biological behavior in blood.
  • Item
    Thumbnail Image
    Metal–Phenolic Networks as Tunable Buffering Systems
    Chen, J ; Pan, S ; Zhou, J ; Seidel, R ; Beyer, S ; Lin, Z ; Richardson, JJ ; Caruso, F (American Chemical Society (ACS), 2021)
    The buffering effects displayed by pH‐responsive polymers have recently gained attention in diverse fields such as nanomedicine and water treatment. However, creating libraries of modular and versatile polymers that can be readily integrated within existing materials remains challenging, hence restricting applications inspired by their buffering capacity. Herein, we propose the use of metal–phenolic networks (MPNs) as tunable buffering systems and through mechanistic studies show that their buffering effects are driven by pH‐responsive, multivalent metal–phenolic coordination. Owing to such supramolecular interactions, MPNs exhibit ~2‐fold and 3‐fold higher buffering capacity than polyelectrolyte complexes and commercial buffer solutions, respectively. We demonstrate that the MPN buffering effects are retained after deposition onto solid supports, thereby allowing stabilization of aqueous environmental pH for 1 week. Moreover, by using different metals and ligands for the films, the endosomal escape capabilities of coated nanoparticles can be tuned, where higher buffering capacity leads to greater endosomal escape. This study forms a fundamental basis for developing future metal–organic buffering materials.
  • Item
    Thumbnail Image
    Programmable Phototaxis of Metal-Phenolic Particle Microswimmers
    Lin, G ; Richardson, JJ ; Ahmed, H ; Besford, QA ; Christofferson, AJ ; Beyer, S ; Lin, Z ; Rezk, AR ; Savioli, M ; Zhou, J ; McConville, CF ; Cortez-Jugo, C ; Yeo, LY ; Caruso, F (WILEY-V C H VERLAG GMBH, 2021-04)
    Light-driven directional motion is common in nature but remains a challenge for synthetic microparticles, particularly regarding collective motion on a macroscopic scale. Successfully engineering microparticles with light-driven collective motion could lead to breakthroughs in drug delivery, contaminant sensing, environmental remediation, and artificial life. Herein, metal-phenolic particle microswimmers capable of autonomously sensing and swimming toward an external light source are reported, with the speed regulated by the wavelength and intensity of illumination. These microswimmers can travel macroscopic distances (centimeters) and can remain illuminated for hours without degradation of motility. Experimental and theoretical analyses demonstrate that motion is generated through chemical transformations of the organic component of the metal-phenolic complex. Furthermore, cargos with specific spectral absorption profiles can be loaded into the particles and endow the particle microswimmers with activated motion corresponding to these spectral characteristics. The programmable nature of the light navigation, tunable size of the particles, and versatility of cargo loading demonstrate the versatility of these metal-phenolic particle microswimmers.
  • Item
    Thumbnail Image
    Versatile Polymer Nanocapsules via Redox Competition
    Zhou, J ; Xu, M ; Jin, Z ; Borum, RM ; Avakyan, N ; Cheng, Y ; Yim, W ; He, T ; Zhou, J ; Wu, Z ; Mantri, Y ; Jokerst, JV (Wiley, 2021-12-06)
    Abstract Polymer nanocapsules have demonstrated significant value in materials science and biomedical technology, but require complicated and time‐consuming synthetic steps. We report here the facile synthesis of monodisperse polymer nanocapsules via a redox‐mediated kinetic strategy from two simple molecules: dopamine and benzene‐1,4‐dithiol (BDT). Specifically, BDT forms core templates and modulates the oxidation kinetics of dopamine into polydopamine (PDA) shells. These uniform nanoparticles can be tuned between ≈70 and 200 nm because the core diameter directly depends on BDT while the shell thickness depends on dopamine. The supramolecular core can then rapidly disassemble in organic solvents to produce PDA nanocapsules. Such nanocapsules exhibit enhanced physicochemical performance (e.g., loading capacity, photothermal transduction, and anti‐oxidation) versus their solid counterparts. Particularly, this method enables a straightforward encapsulation of functional nanoparticles providing opportunities for designing complex nanostructures such as yolk–shell nanoparticles.
  • Item
    Thumbnail Image
    Versatile Polymer Nanocapsules via Redox Competition
    Zhou, J ; Xu, M ; Jin, Z ; Borum, RM ; Avakyan, N ; Cheng, Y ; Yim, W ; He, T ; Zhou, J ; Wu, Z ; Mantri, Y ; Jokerst, J (WILEY-V C H VERLAG GMBH, 2021-12-06)
    Polymer nanocapsules have demonstrated significant value in materials science and biomedical technology, but require complicated and time-consuming synthetic steps. We report here the facile synthesis of monodisperse polymer nanocapsules via a redox-mediated kinetic strategy from two simple molecules: dopamine and benzene-1,4-dithiol (BDT). Specifically, BDT forms core templates and modulates the oxidation kinetics of dopamine into polydopamine (PDA) shells. These uniform nanoparticles can be tuned between ≈70 and 200 nm because the core diameter directly depends on BDT while the shell thickness depends on dopamine. The supramolecular core can then rapidly disassemble in organic solvents to produce PDA nanocapsules. Such nanocapsules exhibit enhanced physicochemical performance (e.g., loading capacity, photothermal transduction, and anti-oxidation) versus their solid counterparts. Particularly, this method enables a straightforward encapsulation of functional nanoparticles providing opportunities for designing complex nanostructures such as yolk-shell nanoparticles.