Chemical and Biomolecular Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 25
  • Item
    No Preview Available
    Site‐Selective Coordination Assembly of Dynamic Metal‐Phenolic Networks
    Xu, W ; Pan, S ; Noble, BB ; Chen, J ; Lin, Z ; Han, Y ; Zhou, J ; Richardson, JJ ; Yarovsky, I ; Caruso, F (Wiley, 2022-08-22)
    Abstract Coordination states of metal‐organic materials are known to dictate their physicochemical properties and applications in various fields. However, understanding and controlling coordination sites in metal‐organic systems is challenging. Herein, we report the synthesis of site‐selective coordinated metal‐phenolic networks (MPNs) using flavonoids as coordination modulators. The site‐selective coordination was systematically investigated experimentally and computationally using ligands with one, two, and multiple different coordination sites. Tuning the multimodal Fe coordination with catechol, carbonyl, and hydroxyl groups within the MPNs enabled the facile engineering of diverse physicochemical properties including size, selective permeability (20–2000 kDa), and pH‐dependent degradability. This study expands our understanding of metal‐phenolic chemistry and provides new routes for the rational design of structurally tailorable coordination‐based materials.
  • Item
    Thumbnail Image
    Site-Selective Coordination Assembly of Dynamic Metal-Phenolic Networks
    Xu, W ; Pan, S ; Noble, BB ; Chen, J ; Lin, Z ; Han, Y ; Zhou, J ; Richardson, JJ ; Yarovsky, I ; Caruso, F (WILEY-V C H VERLAG GMBH, 2022-08-22)
    Coordination states of metal-organic materials are known to dictate their physicochemical properties and applications in various fields. However, understanding and controlling coordination sites in metal-organic systems is challenging. Herein, we report the synthesis of site-selective coordinated metal-phenolic networks (MPNs) using flavonoids as coordination modulators. The site-selective coordination was systematically investigated experimentally and computationally using ligands with one, two, and multiple different coordination sites. Tuning the multimodal Fe coordination with catechol, carbonyl, and hydroxyl groups within the MPNs enabled the facile engineering of diverse physicochemical properties including size, selective permeability (20-2000 kDa), and pH-dependent degradability. This study expands our understanding of metal-phenolic chemistry and provides new routes for the rational design of structurally tailorable coordination-based materials.
  • Item
    Thumbnail Image
    Role of Molecular Interactions in Supramolecular Polypeptide-Polyphenol Networks for Engineering Functional Materials
    Han, Y ; Lafleur, RPM ; Zhou, J ; Xu, W ; Lin, Z ; Richardson, JJ ; Caruso, F (AMER CHEMICAL SOC, 2022-07-13)
    Supramolecular assembly affords the development of a wide range of polypeptide-based biomaterials for drug delivery and nanomedicine. However, there remains a need to develop a platform for the rapid synthesis and study of diverse polypeptide-based materials without the need for employing complex chemistries. Herein, we develop a versatile strategy for creating polypeptide-based materials using polyphenols that display multiple synergistic cross-linking interactions with different polypeptide side groups. We evaluated the diverse interactions operating within these polypeptide-polyphenol networks via binding affinity, thermodynamics, and molecular docking studies and found that positively charged polypeptides (Ka of ∼2 × 104 M-1) and polyproline (Ka of ∼2 × 106 M-1) exhibited stronger interactions with polyphenols than other amino acids (Ka of ∼2 × 103 M-1). Free-standing particles (capsules) were obtained from different homopolypeptides using a template-mediated strategy. The properties of the capsules varied with the homopolypeptide used, for example, positively charged polypeptides produced thicker shell walls (120 nm) with reduced permeability and involved multiple interactions (i.e., electrostatic and hydrogen), whereas uncharged polypeptides generated thinner (10 nm) and more permeable shell walls due to the dominant hydrophobic interactions. Polyarginine imparted cell penetration and endosomal escape properties to the polyarginine-tannic acid capsules, enabling enhanced delivery of the drug doxorubicin (2.5 times higher intracellular fluorescence after 24 h) and a corresponding higher cell death in vitro when compared with polyproline-tannic acid capsules. The ability to readily complex polyphenols with different types of polypeptides highlights that a wide range of functional materials can be generated for various applications.
  • Item
    Thumbnail Image
    Protein precoating modulates biomolecular coronas and nanocapsule-immune cell interactions in human blood
    Li, S ; Ju, Y ; Zhou, J ; Faria, M ; Ang, C-S ; Mitchell, AJ ; Zhong, Q-Z ; Zheng, T ; Kent, SJ ; Caruso, F (ROYAL SOC CHEMISTRY, 2022-09-28)
    The biomolecular corona that forms on particles upon contact with blood plays a key role in the fate and utility of nanomedicines. Recent studies have shown that precoating nanoparticles with serum proteins can improve the biocompatibility and stealth properties of nanoparticles. However, it is not fully clear how precoating influences biomolecular corona formation and downstream biological responses. Herein, we systematically examine three precoating strategies by coating bovine serum albumin (single protein), fetal bovine serum (FBS, mixed proteins without immunoglobulins), or bovine serum (mixed proteins) on three nanoparticle systems, namely supramolecular template nanoparticles, metal-phenolic network (MPN)-coated template (core-shell) nanoparticles, and MPN nanocapsules (obtained after template removal). The effect of protein precoating on biomolecular corona compositions and particle-immune cell interactions in human blood was characterized. In the absence of a pre-coating, the MPN nanocapsules displayed lower leukocyte association, which correlated to the lower amount (by 2-3 fold) of adsorbed proteins and substantially fewer immunoglobulins (more than 100 times) in the biomolecular corona relative to the template and core-shell nanoparticles. Among the three coating strategies, FBS precoating demonstrated the most significant reduction in leukocyte association (up to 97% of all three nanoparticles). A correlation analysis highlights that immunoglobulins and apolipoproteins may regulate leukocyte recognition. This study demonstrates the impact of different precoating strategies on nanoparticle-immune cell association and the role of immunoglobulins in bio-nano interactions.
  • Item
    No Preview Available
    Gold Nanorod-Melanin Hybrids for Enhanced and Prolonged Photoacoustic Imaging in the Near-Infrared-II Window
    Yim, W ; Zhou, J ; Mantri, Y ; Creyer, MN ; Moore, CA ; Jokerst, J (AMER CHEMICAL SOC, 2021-04-07)
    Photoacoustic (PA) imaging holds great promise as a noninvasive imaging modality. Gold nanorods (GNRs) with absorption in the second near-infrared (NIR-II) window have emerged as excellent PA probes because of their tunable optical absorption, surface modifiability, and low toxicity. However, pristine GNRs often undergo shape transition upon laser illumination due to thermodynamic instability, leading to a reduced PA signal after a few seconds of imaging. Here, we report monodisperse GNR-melanin nanohybrids where a tunable polydopamine (PDA) coating was conformally coated on GNRs. GNR@PDAs showed a threefold higher PA signal than pristine GNRs due to the increased optical absorption, cross-sectional area, and thermal confinement. More importantly, the PA signal of GNR@PDAs only decreased by 29% during the 5 min of laser illumination in the NIR-II window, while significant attenuation (77%) was observed for GNRs. The GNR@PDAs maintained 87% of its original PA signal in vivo even after 10 min of laser illumination. This PDA-enabled strategy affords a rational design for robust PA imaging probes and provides more opportunities for other types of photomediated biomedicines, such as photothermal and photodynamic regimens.
  • Item
    No Preview Available
    Phenolic-enabled nanotechnology: versatile particle engineering for biomedicine
    Wu, D ; Zhou, J ; Creyer, MN ; Yim, W ; Chen, Z ; Messersmith, PB ; Jokerst, JV (ROYAL SOC CHEMISTRY, 2021-04-07)
    Phenolics are ubiquitous in nature and have gained immense research attention because of their unique physiochemical properties and widespread industrial use. In recent decades, their accessibility, versatile reactivity, and relative biocompatibility have catalysed research in phenolic-enabled nanotechnology (PEN) particularly for biomedical applications which have been a major benefactor of this emergence, as largely demonstrated by polydopamine and polyphenols. Therefore, it is imperative to overveiw the fundamental mechanisms and synthetic strategies of PEN for state-of-the-art biomedical applications and provide a timely and comprehensive summary. In this review, we will focus on the principles and strategies involved in PEN and summarize the use of the PEN synthetic toolkit for particle engineering and the bottom-up synthesis of nanohybrid materials. Specifically, we will discuss the attractive forces between phenolics and complementary structural motifs in confined particle systems to synthesize high-quality products with controllable size, shape, composition, as well as surface chemistry and function. Additionally, phenolic's numerous applications in biosensing, bioimaging, and disease treatment will be highlighted. This review aims to provide guidelines for new scientists in the field and serve as an up-to-date compilation of what has been achieved in this area, while offering expert perspectives on PEN's use in translational research.
  • Item
    Thumbnail Image
    Assembly of Bioactive Nanoparticles via Metal-Phenolic Complexation
    Chen, J ; Pan, S ; Zhou, J ; Lin, Z ; Qu, Y ; Glab, A ; Han, Y ; Richardson, JJ ; Caruso, F (Wiley, 2022)
    The integration of bioactive materials (e.g., proteins and genes) into nanoparticles holds promise in fields ranging from catalysis to biomedicine. However, it is challenging to develop a simple and broadly applicable nanoparticle platform that can readily incorporate distinct biomacromolecules without affecting their intrinsic activity. Herein, a metal-phenolic assembly approach is presented whereby diverse functional nanoparticles can be readily assembled in water by combining various synthetic and natural building blocks, including poly(ethylene glycol), phenolic ligands, metal ions, and bioactive macromolecules. The assembly process is primarily mediated by metal-phenolic complexes through coordination and hydrophobic interactions, which yields uniform and spherical nanoparticles (mostly <200 nm), while preserving the function of the incorporated biomacromolecules (siRNA and five different proteins used). The functionality of the assembled nanoparticles is demonstrated through cancer cell apoptosis, RNA degradation, catalysis, and gene downregulation studies. Furthermore, the resulting nanoparticles can be used as building blocks for the secondary engineering of superstructures via templating and cross-linking with metal ions. The bioactivity and versatility of the platform can potentially be used for the streamlined and rational design of future bioactive materials.
  • Item
    Thumbnail Image
    Bioresponsive Polyphenol-Based Nanoparticles as Thrombolytic Drug Carriers
    Yu, H ; Palazzolo, JS ; Zhou, J ; Hu, Y ; Niego, B ; Pan, S ; Ju, Y ; Wang, T-Y ; Lin, Z ; Hagemeyer, CE ; Caruso, F (AMER CHEMICAL SOC, 2022-01-12)
    Thrombolytic (clot-busting) therapies with plasminogen activators (PAs) are first-line treatments against acute thrombosis and ischemic stroke. However, limitations such as narrow therapeutic windows, low success rates, and bleeding complications hinder their clinical use. Drug-loaded polyphenol-based nanoparticles (NPs) could address these shortfalls by delivering a more targeted and safer thrombolysis, coupled with advantages such as improved biocompatibility and higher stability in vivo. Herein, a template-mediated polyphenol-based supramolecular assembly strategy is used to prepare nanocarriers of thrombolytic drugs. A thrombin-dependent drug release mechanism is integrated using tannic acid (TA) to cross-link urokinase-type PA (uPA) and a thrombin-cleavable peptide on a sacrificial mesoporous silica template via noncovalent interactions. Following drug loading and template removal, the resulting NPs retain active uPA and demonstrate enhanced plasminogen activation in the presence of thrombin (1.14-fold; p < 0.05). Additionally, they display lower association with macrophage (RAW 264.7) and monocytic (THP-1) cell lines (43 and 7% reduction, respectively), reduced hepatic accumulation, and delayed blood clearance in vivo (90% clearance at 60 min vs 5 min) compared with the template-containing NPs. Our thrombin-responsive, polyphenol-based NPs represent a promising platform for advanced drug delivery applications, with potential to improve thrombolytic therapies.
  • Item
    Thumbnail Image
    Luminescent Metal-Phenolic Networks for Multicolor Particle Labeling
    Lin, Z ; Zhou, J ; Qu, Y ; Pan, S ; Han, Y ; Lafleur, RPM ; Chen, J ; Cortez-Jugo, C ; Richardson, JJ ; Caruso, F (WILEY-V C H VERLAG GMBH, 2021-11-15)
    The development of fluorescence labeling techniques has attracted widespread interest in various fields, including biomedical science as it can facilitate high-resolution imaging and the spatiotemporal understanding of various biological processes. We report a supramolecular fluorescence labeling strategy using luminescent metal-phenolic networks (MPNs) constructed from metal ions, phenolic ligands, and common and commercially available dyes. The rapid labeling process (<5 min) produces ultrathin coatings (≈10 nm) on diverse particles (e.g., organic, inorganic, and biological entities) with customized luminescence (e.g., red, blue, multichromatic, and white light) simply through the selection of fluorophores. The fluorescent coatings are stable at pH values from 1 to 8 and in complex biological media owing to the dominant π interactions between the dyes and MPNs. These coatings exhibit negligible cytotoxicity and their strong fluorescence is retained even when internalized into intracellular compartments. This strategy is expected to provide a versatile approach for fluorescence labeling with potential in diverse fields across the physical and life sciences.
  • Item
    Thumbnail Image
    Robust and Versatile Coatings Engineered via Simultaneous Covalent and Noncovalent Interactions
    Zhou, J ; Penna, M ; Lin, Z ; Han, Y ; Lafleur, RPM ; Qu, Y ; Richardson, JJ ; Yarovsky, I ; Jokerst, JV ; Caruso, F (WILEY-V C H VERLAG GMBH, 2021-09-06)
    Interfacial modular assembly has emerged as an adaptable strategy for engineering the surface properties of substrates in biomedicine, photonics, and catalysis. Herein, we report a versatile and robust coating (pBDT-TA), self-assembled from tannic acid (TA) and a self-polymerizing aromatic dithiol (i.e., benzene-1,4-dithiol, BDT), that can be engineered on diverse substrates with a precisely tuned thickness (5-40 nm) by varying the concentration of BDT used. The pBDT-TA coating is stabilized by covalent (disulfide) bonds and supramolecular (π-π) interactions, endowing the coating with high stability in various harsh aqueous environments across ionic strength, pH, temperature (e.g., 100 mM NaCl, HCl (pH 1) or NaOH (pH 13), and water at 100 °C), as well as surfactant solution (e.g., 100 mM Triton X-100) and biological buffer (e.g., Dulbecco's phosphate-buffered saline), as validated by experiments and simulations. Moreover, the reported pBDT-TA coating enables secondary reactions on the coating for engineering hybrid adlayers (e.g., ZIF-8 shells) via phenolic-mediated adhesion, and the facile integration of aromatic fluorescent dyes (e.g., rhodamine B) via π interactions without requiring elaborate synthetic processes.