Chemical and Biomolecular Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 37
  • Item
    Thumbnail Image
    Self-Assembly of a Metal-Phenolic Sorbent for Broad-Spectrum Metal Sequestration
    Rahim, MA ; Lin, G ; Tomanin, PP ; Ju, Y ; Barlow, A ; Bjornmalm, M ; Caruso, F (AMER CHEMICAL SOC, 2020-01-08)
    Metal contamination of water bodies from industrial effluents presents a global threat to the aquatic ecosystem. To address this challenge, metal sequestration via adsorption onto solid media has been explored extensively. However, existing sorbent systems typically involve energy-intensive syntheses and are applicable to a limited range of metals. Herein, a sorbent system derived from physically cross-linked polyphenolic networks using tannic acid and ZrIV ions has been explored for high-affinity, broad-spectrum metal sequestration. The network formation step (gelation) of the sorbent is complete within 3 min and requires no special apparatus. The key to this system design is the formation of a highly stable coordination network with an optimized metal–ligand ratio (1.2:1), affording access to a major fraction of the chelating sites in tannic acid for capturing diverse metal ions. This system is stable over a pH range of 1–9, thermally stable up to ∼200 °C, and exhibits a negative surface charge (at pH 5). The sorbent system effectively sequesters 28 metals in single- and multielement model wastes, with removal efficiencies exceeding 99%. Furthermore, it is demonstrated that this system can be processed as membrane coatings, thin films, or wet gels to capture metal ions and that both the sorbent and captured metal ions can be regenerated or directly used as composite catalysts.
  • Item
    Thumbnail Image
    Nanoengineering of Poly(ethylene glycol) Particles for Stealth and Targeting
    Cui, J ; Bjornmalm, M ; Ju, Y ; Caruso, F (AMER CHEMICAL SOC, 2018-09-18)
    The assembly of particles composed solely or mainly of poly(ethylene glycol) (PEG) is an emerging area that is gaining increasing interest within bio-nano science. PEG, widely considered to be the "gold standard" among polymers for drug delivery, is providing a platform for exploring fundamental questions and phenomena at the interface between particle engineering and biomedicine. These include the targeting and stealth behaviors of synthetic nanomaterials in biological environments. In this feature article, we discuss recent work in the nanoengineering of PEG particles and explore how they are enabling improved targeting and stealth performance. Specific examples include PEG particles prepared through surface-initiated polymerization, mesoporous silica replication via postinfiltration, and particle assembly through metal-phenolic coordination. This particle class exhibits unique in vivo behavior (e.g., biodistribution and immune cell interactions) and has recently been explored for drug delivery applications.
  • Item
    Thumbnail Image
    Ricocheting Droplets Moving on Super-Repellent Surfaces
    Pan, S ; Guo, R ; Richardson, JJ ; Berry, JD ; Besford, QA ; Bjornmalm, M ; Yun, G ; Wu, R ; Lin, Z ; Zhong, Q-Z ; Zhou, J ; Sun, Q ; Li, J ; Lu, Y ; Dong, Z ; Banks, MK ; Xu, W ; Jiang, J ; Jiang, L ; Caruso, F (Wiley Open Access, 2019-09-12)
    Droplet bouncing on repellent solid surfaces (e.g., the lotus leaf effect) is a common phenomenon that has aroused interest in various fields. However, the scenario of a droplet bouncing off another droplet (either identical or distinct chemical composition) while moving on a solid material (i.e., ricocheting droplets, droplet billiards) is scarcely investigated, despite it having fundamental implications in applications including self‐cleaning, fluid transport, and heat and mass transfer. Here, the dynamics of bouncing collisions between liquid droplets are investigated using a friction‐free platform that ensures ultrahigh locomotion for a wide range of probing liquids. A general prediction on bouncing droplet–droplet contact time is elucidated and bouncing droplet–droplet collision is demonstrated to be an extreme case of droplet bouncing on surfaces. Moreover, the maximum deformation and contact time are highly dependent on the position where the collision occurs (i.e., head‐on or off‐center collisions), which can now be predicted using parameters (i.e., effective velocity, effective diameter) through the concept of an effective interaction region. The results have potential applications in fields ranging from microfluidics to repellent coatings.
  • Item
    Thumbnail Image
    Ligand-Functionalized Poly(ethylene glycol) Particles for Tumor Targeting and Intracellular Uptake.
    Cui, J ; Alt, K ; Ju, Y ; Gunawan, ST ; Braunger, JA ; Wang, T-Y ; Dai, Y ; Dai, Q ; Richardson, JJ ; Guo, J ; Björnmalm, M ; Hagemeyer, CE ; Caruso, F (American Chemical Society, 2019)
    Drug carriers typically require both stealth and targeting properties to minimize nonspecific interactions with healthy cells and increase specific interaction with diseased cells. Herein, the assembly of targeted poly(ethylene glycol) (PEG) particles functionalized with cyclic peptides containing Arg-Gly-Asp (RGD) (ligand) using a mesoporous silica templating method is reported. The influence of PEG molecular weight, ligand-to-PEG molecule ratio, and particle size on cancer cell targeting to balance stealth and targeting of the engineered PEG particles is investigated. RGD-functionalized PEG particles (PEG-RGD particles) efficiently target U-87 MG cancer cells under static and flow conditions in vitro, whereas PEG and cyclic peptides containing Arg-Asp-Gly (RDG)-functionalized PEG (PEG-RDG) particles display negligible interaction with the same cells. Increasing the ligand-to-PEG molecule ratio improves cell targeting. In addition, the targeted PEG-RGD particles improve cell uptake via receptor-mediated endocytosis, which is desirable for intracellular drug delivery. The PEG-RGD particles show improved tumor targeting (14% ID g-1) when compared with the PEG (3% ID g-1) and PEG-RDG (7% ID g-1) particles in vivo, although the PEG-RGD particles show comparatively higher spleen and liver accumulation. The targeted PEG particles represent a platform for developing particles aimed at balancing nonspecific and specific interactions in biological systems.
  • Item
    No Preview Available
    Revisiting cell-particle association in vitro: A quantitative method to compare particle performance.
    Faria, M ; Noi, KF ; Dai, Q ; Björnmalm, M ; Johnston, ST ; Kempe, K ; Caruso, F ; Crampin, EJ (Elsevier, 2019-08-10)
    Nanoengineering has the potential to revolutionize medicine by designing drug delivery systems that are both efficacious and highly selective. Determination of the affinity between cell lines and nanoparticles is thus of central importance, both to enable comparison of particles and to facilitate prediction of in vivo response. Attempts to compare particle performance can be dominated by experimental artifacts (including settling effects) or variability in experimental protocol. Instead, qualitative methods are generally used, limiting the reusability of many studies. Herein, we introduce a mathematical model-based approach to quantify the affinity between a cell-particle pairing, independent of the aforementioned confounding artifacts. The analysis presented can serve as a quantitative metric of the stealth, fouling, and targeting performance of nanoengineered particles in vitro. We validate this approach using a newly created in vitro dataset, consisting of seven different disulfide-stabilized poly(methacrylic acid) particles ranging from ~100 to 1000 nm in diameter that were incubated with three different cell lines (HeLa, THP-1, and RAW 264.7). We further expanded this dataset through the inclusion of previously published data and use it to determine which of five mathematical models best describe cell-particle association. We subsequently use this model to perform a quantitative comparison of cell-particle association for cell-particle pairings in our dataset. This analysis reveals a more complex cell-particle association relationship than a simplistic interpretation of the data, which erroneously assigns high affinity for all cell lines examined to large particles. Finally, we provide an online tool (http://bionano.xyz/estimator), which allows other researchers to easily apply this modeling approach to their experimental results.
  • Item
    Thumbnail Image
    Coatings super-repellent to ultralow surface tension liquids
    Pan, S ; Guo, R ; Bjornmalm, M ; Richardson, JJ ; Li, L ; Peng, C ; Bertleff-Zieschang, N ; Xu, W ; Jiang, J ; Caruso, F (NATURE PUBLISHING GROUP, 2018-11)
    High-performance coatings that durably and fully repel liquids are of interest for fundamental research and practical applications. Such coatings should allow for droplet beading, roll off and bouncing, which is difficult to achieve for ultralow surface tension liquids. Here we report a bottom-up approach to prepare super-repellent coatings using a mixture of fluorosilanes and cyanoacrylate. On application to surfaces, the coatings assemble into thin films of locally multi-re-entrant hierarchical structures with very low surface energies. The resulting materials are super-repellent to solvents, acids and bases, polymer solutions and ultralow surface tension liquids, characterized by ultrahigh liquid contact angles (>150°) and negligible roll-off angles (~0°). Furthermore, the coatings are transparent, durable and demonstrate universal liquid bouncing, tailored responsiveness and anti-freezing properties, and are thus a promising alternative to existing synthetic super-repellent coatings.
  • Item
    Thumbnail Image
    Gel-Mediated Electrospray Assembly of Silica Supraparticles for Sustained Drug Delivery
    Ma, Y ; Bjoernmalm, M ; Wise, AK ; Cortez-Jugo, C ; Revalor, E ; Ju, Y ; Feeney, OM ; Richardson, RT ; Hanssen, E ; Shepherd, RK ; Porter, CJH ; Caruso, F (AMER CHEMICAL SOC, 2018-09-19)
    Supraparticles (SPs) composed of smaller colloidal particles provide a platform for the long-term, controlled release of therapeutics in biomedical applications. However, current synthesis methods used to achieve high drug loading and those involving biocompatible materials are often tedious and low throughput, thereby limiting the translation of SPs to diverse applications. Herein, we present a simple, effective, and automatable alginate-mediated electrospray technique for the assembly of robust spherical silica SPs (Si-SPs) for long-term (>4 months) drug delivery. The Si-SPs are composed of either porous or nonporous primary Si particles within a decomposable alginate matrix. The size and shape of the Si-SPs can be tailored by controlling the concentrations of alginate and silica primary particles used and key electrospraying parameters, such as flow rate, voltage, and collector distance. Furthermore, the performance (including drug loading kinetics, loading capacity, loading efficiency, and drug release) of the Si-SPs can be tuned by changing the porosity of the primary particles and through the retention or removal (via calcination) of the alginate matrix. The structure and morphology of the Si-SPs were characterized by electron microscopy, dynamic light scattering, N2 adsorption-desorption analysis, and X-ray photoelectron spectroscopy. The cytotoxicity and degradability of the Si-SPs were also examined. Drug loading kinetics and loading capacity for six different types of Si-SPs, using a model protein drug (fluorescently labeled lysozyme), demonstrate that Si-SPs prepared from primary silica particles with large pores can load significant amounts of lysozyme (∼10 μg per SP) and exhibit sustained, long-term release of more than 150 days. Our experiments show that Si-SPs can be produced through a gel-mediated electrospray technique that is robust and automatable (important for clinical translation and commercialization) and that they present a promising platform for long-term drug delivery.
  • Item
    Thumbnail Image
    Minimum information reporting in bio-nano experimental literature
    Faria, M ; Bjornmalm, M ; Thurecht, KJ ; Kent, SJ ; Parton, RG ; Kavallaris, M ; Johnston, APR ; Gooding, JJ ; Corrie, SR ; Boyd, BJ ; Thordarson, P ; Whittaker, AK ; Stevens, MM ; Prestidge, CA ; Porter, CJH ; Parak, WJ ; Davis, TP ; Crampin, EJ ; Caruso, F (NATURE PUBLISHING GROUP, 2018-09)
    Studying the interactions between nanoengineered materials and biological systems plays a vital role in the development of biological applications of nanotechnology and the improvement of our fundamental understanding of the bio-nano interface. A significant barrier to progress in this multidisciplinary area is the variability of published literature with regards to characterizations performed and experimental details reported. Here, we suggest a 'minimum information standard' for experimental literature investigating bio-nano interactions. This standard consists of specific components to be reported, divided into three categories: material characterization, biological characterization and details of experimental protocols. Our intention is for these proposed standards to improve reproducibility, increase quantitative comparisons of bio-nano materials, and facilitate meta analyses and in silico modelling.
  • Item
    Thumbnail Image
    Overcoming the Blood-Brain Barrier: The Role of Nanomaterials in Treating Neurological Diseases
    Furtado, D ; Bjornmalm, M ; Ayton, S ; Bush, AI ; Kempe, K ; Caruso, F (WILEY-V C H VERLAG GMBH, 2018-11-15)
    Therapies directed toward the central nervous system remain difficult to translate into improved clinical outcomes. This is largely due to the blood-brain barrier (BBB), arguably the most tightly regulated interface in the human body, which routinely excludes most therapeutics. Advances in the engineering of nanomaterials and their application in biomedicine (i.e., nanomedicine) are enabling new strategies that have the potential to help improve our understanding and treatment of neurological diseases. Herein, the various mechanisms by which therapeutics can be delivered to the brain are examined and key challenges facing translation of this research from benchtop to bedside are highlighted. Following a contextual overview of the BBB anatomy and physiology in both healthy and diseased states, relevant therapeutic strategies for bypassing and crossing the BBB are discussed. The focus here is especially on nanomaterial-based drug delivery systems and the potential of these to overcome the biological challenges imposed by the BBB. Finally, disease-targeting strategies and clearance mechanisms are explored. The objective is to provide the diverse range of researchers active in the field (e.g., material scientists, chemists, engineers, neuroscientists, and clinicians) with an easily accessible guide to the key opportunities and challenges currently facing the nanomaterial-mediated treatment of neurological diseases.
  • Item
    Thumbnail Image
    Supramolecular Metal-Phenolic Gels for the Crystallization of Active Pharmaceutical Ingredients
    Rahim, MA ; Hata, Y ; Bjornmalm, M ; Ju, Y ; Caruso, F (WILEY-V C H VERLAG GMBH, 2018-06-27)
    The use of supramolecular gel media for the crystallization of active pharmaceutical ingredients (APIs) is of interest for controlling crystal size, morphology, and polymorphism, as these features determine the performance of pharmaceutical formulations. In contrast to supramolecular systems prepared from synthetic gelators, herein, supramolecular metallogels based on a natural polyphenol (tannic acid) are used for the crystallization of APIs. The gel-grown API crystals exhibit considerable differences in size, morphology, and polymorphism when compared with those formed in solutions. These physical features can also be tailored by varying the gel composition and additives, suggesting an influence of the gel medium on the crystallization outcomes. Furthermore, these gel-API crystal composites can be used for sustained drug release, indicating their potential as drug delivery systems. The facile preparation of these supramolecular gels and the use of naturally abundant components in their synthesis provide a generic platform for studying gel-mediated crystallization of diverse APIs.