Chemical and Biomolecular Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 73
  • Item
    Thumbnail Image
    Nanoengineering of Poly(ethylene glycol) Particles for Stealth and Targeting
    Cui, J ; Bjornmalm, M ; Ju, Y ; Caruso, F (AMER CHEMICAL SOC, 2018-09-18)
    The assembly of particles composed solely or mainly of poly(ethylene glycol) (PEG) is an emerging area that is gaining increasing interest within bio-nano science. PEG, widely considered to be the "gold standard" among polymers for drug delivery, is providing a platform for exploring fundamental questions and phenomena at the interface between particle engineering and biomedicine. These include the targeting and stealth behaviors of synthetic nanomaterials in biological environments. In this feature article, we discuss recent work in the nanoengineering of PEG particles and explore how they are enabling improved targeting and stealth performance. Specific examples include PEG particles prepared through surface-initiated polymerization, mesoporous silica replication via postinfiltration, and particle assembly through metal-phenolic coordination. This particle class exhibits unique in vivo behavior (e.g., biodistribution and immune cell interactions) and has recently been explored for drug delivery applications.
  • Item
    Thumbnail Image
    Ligand-Functionalized Poly(ethylene glycol) Particles for Tumor Targeting and Intracellular Uptake.
    Cui, J ; Alt, K ; Ju, Y ; Gunawan, ST ; Braunger, JA ; Wang, T-Y ; Dai, Y ; Dai, Q ; Richardson, JJ ; Guo, J ; Björnmalm, M ; Hagemeyer, CE ; Caruso, F (American Chemical Society, 2019)
    Drug carriers typically require both stealth and targeting properties to minimize nonspecific interactions with healthy cells and increase specific interaction with diseased cells. Herein, the assembly of targeted poly(ethylene glycol) (PEG) particles functionalized with cyclic peptides containing Arg-Gly-Asp (RGD) (ligand) using a mesoporous silica templating method is reported. The influence of PEG molecular weight, ligand-to-PEG molecule ratio, and particle size on cancer cell targeting to balance stealth and targeting of the engineered PEG particles is investigated. RGD-functionalized PEG particles (PEG-RGD particles) efficiently target U-87 MG cancer cells under static and flow conditions in vitro, whereas PEG and cyclic peptides containing Arg-Asp-Gly (RDG)-functionalized PEG (PEG-RDG) particles display negligible interaction with the same cells. Increasing the ligand-to-PEG molecule ratio improves cell targeting. In addition, the targeted PEG-RGD particles improve cell uptake via receptor-mediated endocytosis, which is desirable for intracellular drug delivery. The PEG-RGD particles show improved tumor targeting (14% ID g-1) when compared with the PEG (3% ID g-1) and PEG-RDG (7% ID g-1) particles in vivo, although the PEG-RGD particles show comparatively higher spleen and liver accumulation. The targeted PEG particles represent a platform for developing particles aimed at balancing nonspecific and specific interactions in biological systems.
  • Item
    Thumbnail Image
    Cellular Targeting of Bispecific Antibody-Functionalized Poly(ethylene glycol) Capsules: Do Shape and Size Matter?
    Song, D ; Cui, J ; Ju, Y ; Faria, M ; Sun, H ; Howard, CB ; Thurecht, KJ ; Caruso, F (American Chemical Society, 2019-08-01)
    In the present study, a capsule system that consists of a stealth carrier based on poly(ethylene glycol) (PEG) and functionalized with bispecific antibodies (BsAbs) is introduced to examine the influence of the capsule shape and size on cellular targeting. Hollow spherical and rod-shaped PEG capsules with tunable aspect ratios (ARs) of 1, 7, and 18 were synthesized and subsequently functionalized with BsAbs that exhibit dual specificities to PEG and epidermal growth factor receptor (EGFR). Dosimetry (variation between the concentrations of capsules present and capsules that reach the cell surface) was controlled through "dynamic" incubation (i.e., continuously mixing the incubation medium). The results obtained were compared with those obtained from the "static" incubation experiments. Regardless of the incubation method and the capsule shape and size studied, BsAb-functionalized PEG capsules showed >90% specific cellular association to EGFR-positive human breast cancer cells MDA-MB-468 and negligible association with both control cell lines (EGFR negative Chinese hamster ovary cells CHO-K1 and murine macrophages RAW 264.7) after incubation for 5 h. When dosimetry was controlled and the dose concentration was normalized to the capsule surface area, the size or shape had a minimal influence on the cell association behavior of the capsules. However, different cellular internalization behaviors were observed, and the capsules with ARs 7 and 18 were, respectively, the least and most optimal shape for achieving high cell internalization under both dynamic and static conditions. Dynamic incubation showed a greater impact on the internalization of rod-shaped capsules (∼58-67% change) than on the spherical capsules (∼24-29% change). The BsAb-functionalized PEG capsules reported provide a versatile particle platform for the evaluation and comparison of cellular targeting performance of capsules with different sizes and shapes in vitro.
  • Item
    Thumbnail Image
    Modulating Targeting of Poly(ethylene glycol) Particles to Tumor Cells Using Bispecific Antibodies
    Cui, J ; Ju, Y ; Houston, ZH ; Class, JJ ; Fletcher, NL ; Alcantara, S ; Dai, Q ; Howard, CB ; Mahler, SM ; Wheatley, AK ; De Rose, R ; Brannon, PT ; Paterson, BM ; Donnelly, PS ; Thurecht, K ; Caruso, F ; Kent, SJ (WILEY, 2019-05)
    Low-fouling or "stealth" particles composed of poly(ethylene glycol) (PEG) display a striking ability to evade phagocytic cell uptake. However, functionalizing them for specific targeting is challenging. To address this challenge, stealth PEG particles prepared by a mesoporous silica templating method are functionalized with bispecific antibodies (BsAbs) to obtain PEG-BsAb particles via a one-step binding strategy for cell and tumor targeting. The dual specificity of the BsAbs-one arm binds to the PEG particles while the other targets a cell antigen (epidermal growth factor receptor, EGFR)-is exploited to modulate the number of targeting ligands per particle. Increasing the BsAb incubation concentration increases the amount of BsAb tethered to the PEG particles and enhances targeting and internalization into breast cancer cells overexpressing EGFR. The degree of BsAb functionalization does not significantly reduce the stealth properties of the PEG particles ex vivo, as assessed by their interactions with primary human blood granulocytes and monocytes. Although increasing the BsAb amount on PEG particles does not lead to the expected improvement in tumor accumulation in vivo, BsAb functionalization facilitates tumor cell uptake of PEG particles. This work highlights strategies to balance evading nonspecific clearance pathways, while improving tumor targeting and accumulation.
  • Item
    Thumbnail Image
    Low-Fouling and Biodegradable Protein-Based Particles for Thrombus Imaging
    Bonnard, T ; Jayapadman, A ; Putri, JA ; Cui, J ; Ju, Y ; Carmichael, C ; Angelovich, TA ; Cody, SH ; French, S ; Pascaud, K ; Pearce, HA ; Jagdale, S ; Caruso, F ; Hagemeyer, CE (AMER CHEMICAL SOC, 2018-07)
    Nanomedicine holds great promise for vascular disease diagnosis and specific therapy, yet rapid sequestration by the mononuclear phagocytic system limits the efficacy of particle-based agents. The use of low-fouling polymers, such as poly(ethylene glycol), efficiently reduces this immune recognition, but these nondegradable polymers can accumulate in the human body and may cause adverse effects after prolonged use. Thus, new particle formulations combining stealth, low immunogenicity and biocompatible features are required to enable clinical use. Here, a low-fouling particle platform is described using exclusively protein material. A recombinant protein with superior hydrophilic characteristics provided by the amino acid repeat proline, alanine, and serine (PAS) is designed and cross-linked into particles with lysine (K) and polyglutamic acid (E) using mesoporous silica templating. The obtained PASKE particles have low-fouling behavior, have a prolonged circulation time compared to albumin-based particles, and are rapidly degraded in the cell's lysosomal compartment. When labeled with near-infrared fluorescent molecules and functionalized with an anti-glycoprotein IIb/IIIa single-chain antibody targeting activated platelets, the particles show potential as a noninvasive molecular imaging tool in a mouse model of carotid artery thrombosis. The PASKE particles constitute a promising biodegradable and versatile platform for molecular imaging of vascular diseases.
  • Item
    No Preview Available
    An Enzyme-Coated Metal-Organic Framework Shell for Synthetically Adaptive Cell Survival
    Liang, K ; Richardson, JJ ; Doonan, CJ ; Mulet, X ; Ju, Y ; Cui, J ; Caruso, F ; Falcaro, P (WILEY-V C H VERLAG GMBH, 2017-07-10)
    A bioactive synthetic porous shell was engineered to enable cells to survive in an oligotrophic environment. Eukaryotic cells (yeast) were firstly coated with a β-galactosidase (β-gal), before crystallization of a metal-organic framework (MOF) film on the enzyme coating; thereby producing a bioactive porous synthetic shell. The β-gal was an essential component of the bioactive shell as it generated nutrients (that is, glucose and galactose) required for cell viability in nutrient-deficient media (lactose-based). Additionally, the porous MOF coating carried out other vital functions, such as 1) shielding the cells from cytotoxic compounds and radiation, 2) protecting the non-native enzymes (β-gal in this instance) from degradation and internalization, and 3) allowing for the diffusion of molecules essential for the survival of the cells. Indeed, this bioactive porous shell enabled the survival of cells in simulated extreme oligotrophic environments for more than 7 days, leading to a decrease in cell viability less than 30 %, versus a 99 % decrease for naked yeast. When returned to optimal growth conditions the bioactive porous exoskeleton could be removed and the cells regained full growth immediately. The construction of bioactive coatings represents a conceptually new and promising approach for the next-generation of cell-based research and application, and is an alternative to synthetic biology or genetic modification.
  • Item
    No Preview Available
    Role of the Protein Corona Derived from Human Plasma in Cellular Interactions between Nanoporous Human Serum Albumin Particles and Endothelial Cells
    Zyuzin, MV ; Yan, Y ; Hartmann, R ; Gause, KT ; Nazarenus, M ; Cui, J ; Caruso, F ; Parak, WJ (AMER CHEMICAL SOC, 2017-08)
    The presence of a protein corona on various synthetic nanomaterials has been shown to strongly influence how they interact with cells. However, it is unclear if the protein corona also exists on protein particles, and if so, its role in particle-cell interactions. In this study, pure human serum albumin (HSA) particles were fabricated via mesoporous silica particle templating. Our data reveal that various serum proteins adsorbed on the particles, when exposed to human blood plasma, forming a corona. In human umbilical vein endothelial cells (HUVECs), the corona was shown to decrease particle binding to the cell membrane, increase the residence time of particles in early endosomes, and reduce the amount of internalized particles within the first hours of exposure to particles. These findings reveal important information regarding the mechanisms used by vascular endothelial cells to internalize protein-based particulate materials exposed to blood plasma. The ability to control the cellular recognition of these organic particles is expected to aid the advancement of HSA-based materials for intravenous drug delivery.
  • Item
    Thumbnail Image
    One-Step Assembly of Coordination Complexes for Versatile Film and Particle Engineering
    Ejima, H ; Richardson, JJ ; Liang, K ; Best, JP ; van Koeverden, MP ; Such, GK ; Cui, J ; Caruso, F (AMER ASSOC ADVANCEMENT SCIENCE, 2013-07-12)
    The development of facile and versatile strategies for thin-film and particle engineering is of immense scientific interest. However, few methods can conformally coat substrates of different composition, size, shape, and structure. We report the one-step coating of various interfaces using coordination complexes of natural polyphenols and Fe(III) ions. Film formation is initiated by the adsorption of the polyphenol and directed by pH-dependent, multivalent coordination bonding. Aqueous deposition is performed on a range of planar as well as inorganic, organic, and biological particle templates, demonstrating an extremely rapid technique for producing structurally diverse, thin films and capsules that can disassemble. The ease, low cost, and scalability of the assembly process, combined with pH responsiveness and negligible cytotoxicity, makes these films potential candidates for biomedical and environmental applications.
  • Item
    Thumbnail Image
    Tuning the Mechanical Properties of Nanoporous Hydrogel Particles via Polymer Cross-Linking
    Best, JP ; Cui, J ; Muellner, M ; Caruso, F (AMER CHEMICAL SOC, 2013-08-06)
    Soft hydrogel particles with tunable mechanical properties are promising for next-generation therapeutic applications. This is due to the increasingly proven role that physicochemical properties play in particulate-based delivery vectors, both in vitro and in vivo. The ability to understand and quantify the mechanical properties of such systems is therefore essential to optimize function and performance. We report control over the mechanical properties of poly(methacrylic acid) (PMA) hydrogel particles based on a mesoporous silica templating method. The mechanical properties of the obtained particles can be finely tuned through variation of the cross-linker concentration, which is hereby quantified using a cross-linking polymer with a fluorescent tag. We demonstrate that the mechanical properties of the particles can be elucidated using an atomic force microscopy (AFM) force spectroscopy method, which additionally allows for the study of hydrogel material properties at the nanoscale through high-resolution force mapping. Young's modulus and stiffness of the particles were tuned between 0.04 and 2.53 MPa and between 1.6 and 28.4 mN m(-1), respectively, through control over the cross-linker concentration. The relationship between the concentration of the cross-linker added and the amount of adsorbed polymer was observed to follow a Langmuir isotherm, and this relationship was found to correlate linearly with the particle mechanical properties.
  • Item
    Thumbnail Image
    Preparation of Nano- and Microcapsules by Electrophoretic Polymer Assembly
    Richardson, JJ ; Ejima, H ; Loercher, SL ; Liang, K ; Senn, P ; Cui, J ; Caruso, F (WILEY-V C H VERLAG GMBH, 2013)