Chemical and Biomolecular Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 6 of 6
  • Item
    Thumbnail Image
    Antifogging Surface Facilitated by Nanoscale Coatings with Controllable Hydrophobicity and Cross-Linking Density
    Nam, E ; Wong, EHH ; Tan, S ; Fu, Q ; Blencowe, A ; Qiao, GG (WILEY-V C H VERLAG GMBH, 2017-01)
  • Item
    Thumbnail Image
    Blood-Catalyzed RAFT Polymerization
    Reyhani, A ; Nothling, MD ; Ranji-Burachaloo, H ; McKenzie, TG ; Fu, Q ; Tan, S ; Bryant, G ; Qiao, GG (WILEY-V C H VERLAG GMBH, 2018-08-06)
    The use of hemoglobin (Hb) contained within red blood cells to drive a controlled radical polymerization via a reversible addition-fragmentation chain transfer (RAFT) process is reported for the first time. No pre-treatment of the Hb or cells was required prior to their use as polymerization catalysts, indicating the potential for synthetic engineering in complex biological microenvironments without the need for ex vivo techniques. Owing to the naturally occurring prevalence of the reagents employed in the catalytic system (Hb and hydrogen peroxide), this approach may facilitate the development of new strategies for in vivo cell engineering with synthetic macromolecules.
  • Item
    Thumbnail Image
    A novel solid state photocatalyst for living radical polymerization under UV irradiation
    Fu, Q ; McKenzie, TG ; Ren, JM ; Tan, S ; Nam, E ; Qiao, GG (Nature Publishing Group: Open Access Journals - Option C, 2016-02-11)
    This study presents the development of a novel solid state photocatalyst for the photoinduced controlled radical polymerization of methacrylates under mild UV irradiation (λmax ≈ 365 nm) in the absence of conventional photoinitiators, metal-catalysts or dye sensitizers. The photocatalyst design was based on our previous finding that organic amines can act in a synergistic photochemical reaction with thiocarbonylthio compounds to afford well controlled polymethacrylates under UV irradiation. Therefore, in the current contribution an amine-rich polymer was covalently grafted onto a solid substrate, thus creating a heterogeneous catalyst that would allow for facile removal, recovery and recyclability when employed for such photopolymerization reactions. Importantly, the polymethacrylates synthesized using the solid state photocatalyst (ssPC) show similarly excellent chemical and structural integrity as those catalysed by free amines. Moreover, the ssPC could be readily recovered and re-used, with multiple cycles of polymerization showing minimal effect on the integrity of the catalyst. Finally, the ssPC was employed in various photo-"click" reactions, permitting high yielding conjugations under photochemical control.
  • Item
    Thumbnail Image
    Spider-silk inspired polymeric networks by harnessing the mechanical potential of β-sheets through network guided assembly.
    Chan, NJ-A ; Gu, D ; Tan, S ; Fu, Q ; Pattison, TG ; O'Connor, AJ ; Qiao, GG (Springer Nature, 2020-04-02)
    The high toughness of natural spider-silk is attributed to their unique β-sheet secondary structures. However, the preparation of mechanically strong β-sheet rich materials remains a significant challenge due to challenges involved in processing the polymers/proteins, and managing the assembly of the hydrophobic residues. Inspired by spider-silk, our approach effectively utilizes the superior mechanical toughness and stability afforded by localised β-sheet domains within an amorphous network. Using a grafting-from polymerisation approach within an amorphous hydrophilic network allows for spatially controlled growth of poly(valine) and poly(valine-r-glycine) as β-sheet forming polypeptides via N-carboxyanhydride ring opening polymerisation. The resulting continuous β-sheet nanocrystal network exhibits improved compressive strength and stiffness over the initial network lacking β-sheets of up to 30 MPa (300 times greater than the initial network) and 6 MPa (100 times greater than the initial network) respectively. The network demonstrates improved resistance to strong acid, base and protein denaturants over 28 days.
  • Item
    Thumbnail Image
    Photocontrolled Cargo Release from Dual Cross-Linked Polymer Particles
    Tan, S ; Cui, J ; Fu, Q ; Nam, E ; Ladewig, K ; Ren, JM ; Wong, EHH ; Caruso, F ; Blencowe, A ; Qiao, GG (AMER CHEMICAL SOC, 2016-03-09)
    Burst release of a payload from polymeric particles upon photoirradiation was engineered by altering the cross-linking density. This was achieved via a dual cross-linking concept whereby noncovalent cross-linking was provided by cyclodextrin host-guest interactions, and irreversible covalent cross-linking was mediated by continuous assembly of polymers (CAP). The dual cross-linked particles (DCPs) were efficiently infiltrated (∼80-93%) by the biomacromolecule dextran (molecular weight up to 500 kDa) to provide high loadings (70-75%). Upon short exposure (5 s) to UV light, the noncovalent cross-links were disrupted resulting in increased permeability and burst release of the cargo (50 mol % within 1 s) as visualized by time-lapse fluorescence microscopy. As sunlight contains UV light at low intensities, the particles can potentially be incorporated into systems used in agriculture, environmental control, and food packaging, whereby sunlight could control the release of nutrients and antimicrobial agents.
  • Item
    Thumbnail Image
    Fabrication of ultra-thin polyrotaxane-based films via solid-state continuous assembly of polymers
    Tan, S ; Nam, E ; Cui, J ; Xu, C ; Fu, Q ; Ren, JM ; Wong, EHH ; Ladewig, K ; Caruso, F ; Blencowe, A ; Qiao, GG (ROYAL SOC CHEMISTRY, 2015)
    Surface-confined ultra-thin polyrotaxane (PRX)-based films with tunable composition, surface topology and swelling characteristics were prepared by solid-state continuous assembly of polymers (ssCAP). The PRX-based films supported cell attachment, and their degradation in biological media could be tuned. This study provides a versatile nano-coating technology with potential applications in biomedicine, including tissue engineering and medical devices.