Chemical and Biomolecular Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 26
  • Item
    Thumbnail Image
    Influence of protein corona on the interaction of glycogen-siRNA constructs with ex vivo human blood immune cells.
    Wojnilowicz, M ; Laznickova, P ; Ju, Y ; Ang, C-S ; Tidu, F ; Bendickova, K ; Forte, G ; Plebanski, M ; Caruso, F ; Cavalieri, F ; Fric, J (Elsevier BV, 2022-09)
    Glycogen-nucleic acid constructs i.e., glycoplexes are emerging promising platforms for the alteration of gene expression and transcription. Understanding the interaction of glycoplexes with human blood components, such as serum proteins and peripheral blood mononuclear cells (PBMCs), is important to overcome immune cell activation and control biodistribution upon administration of the glycoplexes in vivo. Herein, we investigated the interactions of polyethylene glycol (PEG)ylated and non-PEGylated glycoplexes carrying siRNA molecules with PBMCs isolated from the blood of healthy donors. We found that both types of glycoplexes were non-toxic and were primarily phagocytosed by monocytes without triggering a pro-inflammatory interleukin 6 cytokine production. Furthermore, we investigated the role of the protein corona on controlling the internalization efficiency in immune cells - we found that the adsorption of serum proteins, in particular haptoglobin, alpha-1-antitrypsin and apolipoprotein A-II, onto the non-PEGylated glycoplexes, significantly reduced the uptake of the glycoplexes by PBMCs. Moreover, the non-PEGylated glycoplexes were efficient in the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) knockdown in monocytic THP-1 cell line. This study provides an insight into the rational design of glycogen-based nanocarriers for the safe delivery of siRNA without eliciting unwanted immune cell activation and efficient siRNA activity upon its delivery.
  • Item
    No Preview Available
    Sonosynthesis of nanobiotics with antimicrobial and antioxidant properties.
    Zhu, H ; Wen, Q ; Bhangu, SK ; Ashokkumar, M ; Cavalieri, F (Elsevier BV, 2022-05)
    Transforming small-molecule antibiotics into carrier-free nanoantibiotics represents an opportunity for developing new multifunctional therapeutic agents. In this study, we demonstrate that acoustic cavitation produced by high-frequency ultrasound transforms the antibiotic doxycycline into carrier-free nanobiotics. Upon sonication for 1 h at 10-15 W cm-3, doxycycline molecules underwent hydroxylation and dimerization processes to ultimately self-assemble into nanoparticles of ∼100-200 nm in size. Micrometer sized particles can be also obtained by increasing the acoustic power to 20 W cm-3. The nanodrugs exhibited antioxidant properties, along with antimicrobial activity against both Gram-positive (S. aureus) and Gram-negative (E. coli) bacterial strains. Our results highlight the feasibility of the ultrasound-based approach for engineering drug molecules into a nanosized formulation with controlled and multiple bio-functionalities.
  • Item
    No Preview Available
    Lysozyme microspheres incorporated with anisotropic gold nanorods for ultrasound activated drug delivery.
    Bhargawa, B ; Sharma, V ; Ganesh, M-R ; Cavalieri, F ; Ashokkumar, M ; Neppolian, B ; Sundaramurthy, A (Elsevier BV, 2022-05)
    We report on the fabrication of lysozyme microspheres (LyMs) incorporated with gold nanorods (NRs) as a distinctive approach for the encapsulation and release of an anticancer drug, 5-Fluorouracil (5-FU). LyMs with an average size of 4.0 ± 1.0 µm were prepared by a sonochemical method and characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Fourier-transform infrared spectroscopy (FTIR). The LyMs were examined using hydrophobic (nile red) as well as hydrophilic (trypan blue) dyes under confocal laser scanning microscopy (CLSM) to obtain information about the preferential distribution of fluorescent molecules. Notably, the fluorescent molecules were accumulated in the inner lining of LyMs as the core was occupied with air. The encapsulation efficiency of 5-FU for LyMs-NR was found to be ∼64%. The drug release from control LyMs as well as LyMs incorporated with NRs was investigated under the influence of ultrasound (US) at 200 kHz. The total release for control LyMs and LyMs incorporated with gold NRs was found to be ∼70 and 95% after 1 h, respectively. The density difference caused by NR incorporation on the shell played a key role in rupturing the LyMs-NR under US irradiation. Furthermore, 5-FU loaded LyMs-NR exhibited excellent anti-cancer activity against the THP-1 cell line (∼90% cell death) when irradiated with US of 200 kHz. The enhanced anti-cancer activity of LyMs-NR was caused by the transfer of released 5-FU molecules from bulk to the interior of the cell via temporary pores formed on the surface of cancer cells, i.e., sonoporation. Thus, LyMs-NR demonstrated here has a high potential for use as carriers in the field of drug delivery, bio-imaging and therapy.
  • Item
    No Preview Available
    Aggregation properties of a therapeutic peptide for rheumatoid arthritis: A spectroscopic and molecular dynamics study
    Cimino, R ; Savioli, M ; Carrante, NF ; Placidi, E ; Garay-Perez, H ; López-Abad, M ; Lasa, AM ; Domínguez-Horta, MDC ; Gatto, E ; Cavalieri, F ; Bocchinfuso, G ; Venanzi, M (Elsevier BV, 2022-01)
  • Item
    No Preview Available
    Formulation matters! A spectroscopic and molecular dynamics investigation on the peptide CIGB552 as itself and in its therapeutical formulation
    Savioli, M ; Antonelli, L ; Bocchinfuso, G ; Cavalieri, F ; Cimino, R ; Gatto, E ; Placidi, E ; Fernandez Masso, JR ; Garay Perez, H ; Santana, H ; Guerra-Vallespi, M ; Venanzi, M (WILEY, 2021-06-10)
    Synthetic therapeutic peptides (STP) are intensively studied as new-generation drugs, characterized by high purity, biocompatibility, selectivity and stereochemical control. However, most of the studies are focussed on the bioactivity of STP without considering how the formulation actually used for therapy administration could alter the physico-chemical properties of the active principle. The aggregation properties of a 20-mer STP (Ac-His-Ala-Arg-Ile-Lys-D-Pro-Thr-Phe-Arg-Arg-D-Leu-Lys-Trp-Lys-Tyr-Lys-Gly-Lys-Phe-Trp-NH2 ), showing antitumor activity, were investigated by optical spectroscopy and atomic force microscopy imaging, as itself (CIGB552) and in its therapeutic formulation (CIGB552TF). It has found that the therapeutic formulation deeply affects the aggregation properties of the investigated peptide and the morphology of the aggregates formed on mica by deposition of CIGB552 and CIGB552TF millimolar solutions. Molecular dynamics simulations studied the first steps of CIGB552 aggregation under physiological ionic strength conditions (NaCl 150 mM), showing that peptide oligomers, from dimers to tetramers, are preferentially formed in this environment. Interestingly, cell viability assays performed on H-460 cell lines indicate a major antiproliferative activity of the peptide in its therapeutic formulation with respect to the peptide aqueous solution.
  • Item
    No Preview Available
    Ultrasonic microencapsulation of oil-soluble vitamins by hen egg white and green tea for fortification of food
    Zhu, H ; Mettu, S ; Cavalieri, F ; Ashokkumar, M (ELSEVIER SCI LTD, 2021-03-10)
    We report the microencapsulation of oil soluble vitamins (A, D and E) using a one pot ultrasonic process and raw egg white proteins as a shell material. Green tea catechin/iron complex coating method was further developed to impart UV filtering property to the microcapsules in order to protect the encapsulated nutrients from photodegradation. The microcapsules showed antibacterial properties and long shelf-life. The encapsulated vitamins were protected from degradation upon heating, UV irradiation, simulated storage/transit and cooking processes. The in-vitro digestion study showed that functional vitamin D can be potentially released in the gastrointestinal tract improving vitamin D availability by more than 2-fold compared to the free vitamin. The vitamin D microcapsules were highly stable and maintained their microstructures once incorporated into staple food products. The low-cost egg white shell encapsulated vitamins can improve the nutritional value of staple food products to combat maternal and child malnutrition.
  • Item
    Thumbnail Image
    The Transdermal Delivery of Therapeutic Cannabinoids.
    Mahmoudinoodezh, H ; Telukutla, SR ; Bhangu, SK ; Bachari, A ; Cavalieri, F ; Mantri, N (MDPI AG, 2022-02-18)
    Recently, several studies have indicated an increased interest in the scientific community regarding the application of Cannabis sativa plants, and their extracts, for medicinal purposes. This plant of enormous medicinal potential has been legalised in an increasing number of countries globally. Due to the recent changes in therapeutic and recreational legislation, cannabis and cannabinoids are now frequently permitted for use in clinical settings. However, with their highly lipophilic features and very low aqueous solubility, cannabinoids are prone to degradation, specifically in solution, as they are light-, temperature-, and auto-oxidation-sensitive. Thus, plant-derived cannabinoids have been developed for oral, nasal-inhalation, intranasal, mucosal (sublingual and buccal), transcutaneous (transdermal), local (topical), and parenteral deliveries. Among these administrations routes, topical and transdermal products usually have a higher bioavailability rate with a prolonged steady-state plasma concentration. Additionally, these administrations have the potential to eliminate the psychotropic impacts of the drug by its diffusion into a nonreactive, dead stratum corneum. This modality avoids oral administration and, thus, the first-pass metabolism, leading to constant cannabinoid plasma levels. This review article investigates the practicality of delivering therapeutic cannabinoids via skin in accordance with existing literature.
  • Item
    Thumbnail Image
    Transforming the Chemical Structure and Bio-Nano Activity of Doxorubicin by Ultrasound for Selective Killing of Cancer Cells
    Bhangu, SK ; Fernandes, S ; Beretta, GL ; Tinelli, S ; Cassani, M ; Radziwon, A ; Wojnilowicz, M ; Sarpaki, S ; Pilatis, I ; Zaffaroni, N ; Forte, G ; Caruso, F ; Ashokkumar, M ; Cavalieri, F (WILEY-V C H VERLAG GMBH, 2022-02-18)
    Reconfiguring the structure and selectivity of existing chemotherapeutics represents an opportunity for developing novel tumor-selective drugs. Here, as a proof-of-concept, the use of high-frequency sound waves is demonstrated to transform the nonselective anthracycline doxorubicin into a tumor selective drug molecule. The transformed drug self-aggregates in water to form ≈200 nm nanodrugs without requiring organic solvents, chemical agents, or surfactants. The nanodrugs preferentially interact with lipid rafts in the mitochondria of cancer cells. The mitochondrial localization of the nanodrugs plays a key role in inducing reactive oxygen species mediated selective death of breast cancer, colorectal carcinoma, ovarian carcinoma, and drug-resistant cell lines. Only marginal cytotoxicity (80-100% cell viability) toward fibroblasts and cardiomyocytes is observed, even after administration of high doses of the nanodrug (25-40 µg mL-1 ). Penetration, cytotoxicity, and selectivity of the nanodrugs in tumor-mimicking tissues are validated by using a 3D coculture of cancer and healthy cells and 3D cell-collagen constructs in a perfusion bioreactor. The nanodrugs exhibit tropism for lung and limited accumulation in the liver and spleen, as suggested by in vivo biodistribution studies. The results highlight the potential of this approach to transform the structure and bioactivity of anticancer drugs and antibiotics bearing sono-active moieties.
  • Item
    Thumbnail Image
    Nanoscale probing and imaging of HIV-1 RNA in cells with a chimeric LNA-DNA sensor
    Amodio, A ; Cassani, M ; Mummolo, L ; Cortez-Jugo, C ; Bhangu, SK ; Symons, J ; Ahlenstiel, CL ; Forte, G ; Ricci, F ; Kelleher, AD ; Lewin, SR ; Cavalieri, F ; Caruso, F (ROYAL SOC CHEMISTRY, 2022-01-31)
    Real-time detection and nanoscale imaging of human immunodeficiency virus type 1 ribonucleic acid (HIV-1 RNA) in latently infected cells that persist in people living with HIV-1 on antiretroviral therapy in blood and tissue may reveal new insights needed to cure HIV-1 infection. Herein, we develop a strategy combining DNA nanotechnology and super-resolution expansion microscopy (ExM) to detect and image a 22 base sequence transcribed from the HIV-1 promoter in model live and fixed cells. We engineer a chimeric locked nucleic acid (LNA)-DNA sensor via hybridization chain reaction to probe HIV-1 RNA in the U3 region of the HIV-1 long terminal repeat (LTR) by signal amplification in live cells. We find that the viral RNA transcript of the U3 region of the HIV-1 LTR, namely PromA, is a valid and specific biomarker to detect infected live cells. The efficiency and selectivity of the LNA-DNA sensor are evaluated in combination with ExM. Unlike standard ExM methods, which rely on additional custom linkers to anchor and immobilize RNA molecules in the intracellular polymeric network, in the current strategy, we probe and image the HIV-1 RNA target at nanoscale resolution, without resorting to chemical linkers or additional preparation steps. This is achieved by physical entrapment of the HIV-1 viral transcripts in the cells post-expansion by finely tuning the mesh size of the intracellular polymeric network.
  • Item
    Thumbnail Image
    Triggering the nanophase separation of albumin through multivalent binding to glycogen for drug delivery in 2D and 3D multicellular constructs
    Radziwon, A ; Bhangu, SK ; Fernandes, S ; Cortez-Jugo, C ; De Rose, R ; Dyett, B ; Wojnilowicz, M ; Laznickova, P ; Fric, J ; Forte, G ; Caruso, F ; Cavalieri, F (ROYAL SOC CHEMISTRY, 2022-01-24)
    Engineered nanoparticles for the encapsulation of bioactive agents hold promise to improve disease diagnosis, prevention and therapy. To advance this field and enable clinical translation, the rational design of nanoparticles with controlled functionalities and a robust understanding of nanoparticle-cell interactions in the complex biological milieu are of paramount importance. Herein, a simple platform obtained through the nanocomplexation of glycogen nanoparticles and albumin is introduced for the delivery of chemotherapeutics in complex multicellular 2D and 3D systems. We found that the dendrimer-like structure of aminated glycogen nanoparticles is key to controlling the multivalent coordination and phase separation of albumin molecules to form stable glycogen-albumin nanocomplexes. The pH-responsive glycogen scaffold conferred the nanocomplexes the ability to undergo partial endosomal escape in tumour, stromal and immune cells while albumin enabled nanocomplexes to cross endothelial cells and carry therapeutic agents. Limited interactions of nanocomplexes with T cells, B cells and natural killer cells derived from human blood were observed. The nanocomplexes can accommodate chemotherapeutic drugs and release them in multicellular 2D and 3D constructs. The drugs loaded on the nanocomplexes retained their cytotoxic activity, which is comparable with the activity of the free drugs. Cancer cells were found to be more sensitive to the drugs in the presence of stromal and immune cells. Penetration and cytotoxicity of the drug-loaded nanocomplexes in tumour mimicking tissues were validated using a 3D multicellular-collagen construct in a perfusion bioreactor. The results highlight a simple and potentially scalable strategy for engineering nanocomplexes made entirely of biological macromolecules with potential use for drug delivery.