Medicine (Western Health) - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Undercarboxylated osteocalcin and ibandronate combination ameliorates hindlimb immobilization-induced muscle wasting
    Lin, X ; Smith, C ; Moreno-Asso, A ; Zarekookandeh, N ; Brennan-Speranza, TC ; Duque, G ; Hayes, A ; Levinger, I (WILEY, 2023-05)
    Immobilization leads to muscle wasting and insulin resistance, particularly during ageing. It has been suggested that undercarboxylated osteocalcin (ucOC) improves muscle mass and glucose metabolism. Bisphosphonates, an anti-osteoporosis treatment, might protect muscle wasting independent of ucOC. We hypothesize that the combination of ucOC and ibandronate (IBN) treatments has superior protective effects against immobilization-induced muscle wasting and insulin resistance than either treatment alone. C57BL/6J mice were hindlimb-immobilized for two weeks, with injections of vehicle, ucOC (90 ng/g daily) and/or IBN (2 μg/g weekly). Insulin/oral glucose tolerance tests (ITT/OGTT) were performed. Immediately after immobilization, muscles (extensor digitorum longus (EDL), soleus, tibialis anterior, gastrocnemius and quadriceps) were isolated and measured for muscle mass. Insulin-stimulated glucose uptake (EDL and soleus) was examined. Phosphorylation/expression of proteins in anabolic/catabolic pathways were examined in quadriceps. Primary human myotubes derived from older adult muscle biopsies were treated with ucOC and/or IBN, then signalling proteins were analysed. Combined treatment, but not individual treatments, significantly increased the muscle weight/body weight ratio in immobilized soleus (31.7%; P = 0.013) and quadriceps (20.0%; P = 0.0008) muscles, concomitant with elevated p-Akt (S473)/Akt ratio (P = 0.0047). Combined treatment also enhanced whole-body glucose tolerance (16.6%; P = 0.0011). In human myotubes, combined treatment stimulated greater activation of ERK1/2 (P = 0.0067 and 0.0072) and mTOR (P = 0.036), and led to a lesser expression of Fbx32 (P = 0.049) and MuRF1 (P = 0.048) than individual treatments. These findings suggest a potential therapeutic role for the ucOC and bisphosphonates combination in protecting against muscle wasting induced by immobilization and ageing. KEY POINTS: It has been suggested that undercarboxylated osteocalcin (ucOC) improves muscle mass and glucose metabolism. Bisphosphonates, an anti-osteoporosis treatment, might protect against muscle wasting independent of ucOC. The combination treatment of ucOC and ibandronate was shown to exert a greater therapeutic effect against immobilization-induced muscle wasting, and led to greater activation of anabolic pathway and less expression of catabolic signalling proteins in myotubes derived from older adults, compared with individual treatments. The combination treatment was found to improve whole-body glucose tolerance. Our findings suggest a potential therapeutic role for the ucOC and bisphosphonates combination in protecting against muscle wasting induced by immobilization and ageing.
  • Item
    Thumbnail Image
    Undercarboxylated osteocalcin is associated with vascular function in female older adults but does not influence vascular function in male rabbit carotid artery ex vivo
    Tacey, A ; Smith, C ; Woessner, MN ; Chubb, P ; Neil, C ; Duque, G ; Hayes, A ; Zulli, A ; Levinger, I ; Bader, M (PUBLIC LIBRARY SCIENCE, 2020-11-25)
    BACKGROUND: There are conflicting reports on the association of undercarboxylated osteocalcin (ucOC) in cardiovascular disease development, including endothelial function and hypertension. We tested whether ucOC is related to blood pressure and endothelial function in older adults, and if ucOC directly affects endothelial-mediated vasodilation in the carotid artery of rabbits. METHODS: In older adults, ucOC, blood pressure, pulse wave velocity (PWV) and brachial artery flow-mediated dilation (BAFMD) were measured (n = 38, 26 post-menopausal women and 12 men, mean age 73 ± 0.96). The vasoactivity of the carotid artery was assessed in male New Zealand White rabbits following a four-week normal or atherogenic diet using perfusion myography. An ucOC dose response curve (0.3-45 ng/ml) was generated following incubation of the arteries for 2-hours in either normal or high glucose conditions. RESULTS: ucOC levels were higher in normotensive older adults compared to those with stage 2 hypertension (p < 0.05), particularly in women (p < 0.01). In all participants, higher ucOC was associated with lower PWV (p < 0.05), but not BAFMD (p > 0.05). In rabbits, ucOC at any dose did not alter vasoactivity of the carotid artery, either following a normal or an atherogenic diet (p > 0.05). CONCLUSION: Increased ucOC is associated with lower blood pressure and increased arterial stiffness, particularly in post-menopausal women. However, ucOC administration has no direct short-term effect on endothelial function in rabbit arteries. Future studies should explore whether treatment with ucOC, in vivo, has direct or indirect effects on blood vessel function.