Paediatrics (RCH) - Theses

Permanent URI for this collection

Search Results

Now showing 1 - 1 of 1
  • Item
    Thumbnail Image
    Epigenetic discordance in newborn monozygotic and dizygotic twin pairs
    Joo, Ji-Hoon Eric ( 2012)
    Introduction: There is strong evidence that the intrauterine environment can program the long-term health outcomes of the developing fetus. Adverse fetal programming is often also accompanied by low birth weight and this can act as a predictor for later health complications (e.g. hypertension). Although substantiated by numerous animal studies and a small number of human studies, the mechanisms underlying this phenomenon (known as “fetal programming”), remain to be elucidated. Interestingly, epigenetic marks are reprogrammed during early development and subject to change more frequently than genetic mutations. Additionally, epigenetic marks are sensitive to a myriad of environmental influences, suggesting that environmentally mediated epigenetic change during early development may underpin the phenomenon of fetal programming. In order to increase our understanding of this potential mechanistic link, the current study measured aspects of intrauterine environment and epigenetic profile in Human Umbilical Vascular Endothelial Cells (HUVECs) collected from healthy twins at birth as a part of the recently established Pre/Post-natal Epigenetic Twins Study (PETS). HUVECs provide an insight into the fetal programming hypothesis because this cell type is an important mediator in both controlling fetal growth and maintaining cardiovascular health. Furthermore, this study utilised a twin design, controlling for genetic influences (monozygotic twins) or major shared environmental factors (dizygotic twins) on epigenetic profile. Epigenetic profile was measured on a genome-scale using a recently developed DNA methylation microarray and gene expression arrays (as a proxy sum of all epigenetic marks). In addition, the H19/IGF2 imprinted region was examined at a high resolution as an example of a genomic region subject to epigenetic control, also implicated in fetal growth. Materials and Methods: Three approaches were employed to measure within-twin-pair epigenetic discordance in this study: 1. Genome-scale gene expression analysis of 10 MZ pairs; 2. Genome-scale DNA methylation analysis of 13 MZ and 11 DZ pairs; and 3. DNA methylation analysis of 33 MZ and 26 DZ pairs on H19/IGF2 imprinted locus. Genome-scale analyses of gene expression and DNA methylation were performed using Illumina BeadChip expression and Infinium methylation microarrays, whilst our H19/IGF2 locus methylation analysis was performed using the Sequenom MassARRAY EpiTYPER platform. Results: Both genome-scale and locus specific analyses identified a range of within-pair epigenetic discordance within MZ twin pairs at birth, indicating epigenetic drift in utero most likely due to subtle differences in the in utero environment together with stochastic factors. However, evidence of a genetic influence on epigenetic profile was also found, as within twin pair discordances were generally lower for MZ twins relative to DZ twins and unrelated individuals. By regressing within-pair discordance for gene expression and DNA methylation with birth weight discordance, we were able to identify a number of genes which may play an important role in fetal growth and which provide a potential mechanism for the fetal programming hypothesis. In addition, we show common involvement of genes which are discordantly expressed (i.e. hypervariable genes) in immune reponse and response to external signals and differently methylated genes in cell death and proliferation. This study also shows a greater variation in DNA methylation in regions distant from CpG islands than the islands themselves, providing compelling evidence in support of the important role of DNA methylation at CpG dinucleotides proximal to CpG islands (CpG island shores and shelves). We also utilised publically available gene expression microarray data of twins of different ages and compared their gene expression discordance with those detected at birth in our twins and found an increasing epigenetic discordance associated with the age. Finally, the data from our concurrent studies of additional tissues (cord blood mononuclear cells, buccal, placental cells) revealed a highly tissue specific DNA methylation pattern in the H19/IGF2 region. Conclusions: The findings of this study have revealed multiple levels of regulation of epigenetic profile occurring in humans prior to birth. It supports a role for the in utero period specifying the epigenetic profile in response to maternal nutrition and other environmental exposures (in addition to other stochastic influences), with implications for the fetus’ immediate, as well as long-term health outcomes.