Optometry and Vision Sciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    No Preview Available
    Reversibility of retinal ganglion cell dysfunction due to chronic IOP elevation.
    Zhao, D ; Wong, VHY ; He, Z ; Nguyen, CTO ; Jobling, AI ; Fletcher, E ; Chinnery, H ; Jusuf, P ; Lim, JKH ; Vingrys, AJ ; Bui, BV (Association for Research in Vision and Ophthalmology, 2018-07-01)
    Purpose : To determine the duration of chronic IOP elevation beyond which ganglion cell function can no longer recover using the mouse circumlimbal suture model. Methods : IOP elevation was induced in anaesthetized (isoflurane) adult male C57BL6/J mice by attaching a circumlimbal suture (nylon, 10/0) around the equator of one eye, with the contralateral eye serving as a control. The suture was left in place for 8, 12 and 16 weeks (n=27, 23 and 27), respectively, and animals underwent electroretinography and optical coherence tomography at these time points. In two other groups, the suture was removed after 8 and 12 weeks (n=26 and 28), and the capacity for recovery assessed 4 weeks later. IOP was measured weekly (Tonolab). Retinal ganglion cell (RGC) function (or integrity) was assessed with the positive scotopic threshold response (pSTR) and retinal nerve fibre layer (RNFL) thickness. Data (mean ± SEM) were compared using t-test (control vs. treatment) and one-way ANOVA (within groups). Results : IOP in sutured eyes was higher than control eyes (8wk: 17.1 ± 0.3 vs. 26.8 ± 0.6 mmHg, 12wk: 13.8 ± 0.3 vs. 19.5 ± 0.5 mmHg, 16wk: 17.1 ± 0.2 vs. 27.4 ± 0.6 mmHg; all P<0.001). After suture removal, IOP returned to levels comparable to control eyes (8+4wk: 16.9 ± 0.3 vs. 16.1 ± 0.3 mmHg; P=0.08, 12+4wk: 17.3 ± 0.2 vs. 17.1 ± 0.3 mmHg; P=0.5). With IOP elevation, RGC function declined to 75% ± 8% (8wk), 78% ± 7% (12wk) and 59% ± 4% (16wk, all P<0.001) of control eyes. RNFL thinning was also evident (8wk: 84% ± 4%, 12wk: 83% ± 5%; 16wk: 83% ± 3%; P<0.001) but no change in total retinal thickness was noted (P=0.33). Suture removal at week 8 facilitated full recovery of RGC function (97% ± 7%, P=0.9 vs. baseline) 4 weeks later. However, there was no recovery in RNFL thickness (87% ± 3%, P<0.001 vs. baseline). When the suture was removed at week 12, neither function (79% ± 9%, P<0.05) nor RNFL thickness recovered (89% ± 3%, P<0.01) 4 weeks later. Conclusions : RGC dysfunction can be recovered 4 weeks after an 8-week period of mild IOP elevation, but not after a 12-week period. Beyond 12 weeks, IOP reversal only served to prevent further functional decline. This identifies a critical chronic IOP duration that results in irreversible ganglion cell dysfunction. This is an abstract that was submitted for the 2018 ARVO Annual Meeting, held in Honolulu, Hawaii, April 29 - May 3, 2018.
  • Item
    Thumbnail Image
    Ocular Phenotype of Relaxin Gene Knockout (Rln-/-) Mice
    Hampel, U ; Chinnery, HR ; Garreis, F ; Paulsen, F ; de Iongh, R ; Bui, B ; Nguyen, C ; Parry, L ; Chen, HL (TAYLOR & FRANCIS INC, 2020-10-02)
    Purpose: To test if relaxin deficiency affects ocular structure and function we investigated expression of relaxin (Rln) and RXFP receptors (Rxfp1, Rxfp2), and compared ocular phenotypes in relaxin gene knockout (Rln-/- ) and wild type (Rln+/+ ) mice. Materials and Methods: Rln, Rxfp1 and Rxfp2 mRNA expression was detected in ocular tissues of Rln+/+ mice using RT-PCR. The eyes of 11 Rln-/- and 5 Rln+/+ male mice were investigated. Corneal and retinal thickness was assessed using optical coherence tomography. Intraocular pressure was measured using a rebound tonometer. Retinal, choroidal and sclera morphology and thickness were evaluated histologically. Eyes were collected and fixed for immunofluorescence staining or used for RNA extraction to evaluate mRNA expression using real-time PCR. Results: Rln mRNA was expressed only in the retina, whereas Rxfp1 transcripts were detected in the retina, cornea and sclera/choroid. Rxfp2 was only present in the cornea. None of these genes were expressed in the lacrimal gland, eyelid or lens. Intraocular pressure was higher and central cornea of Rln-/- mice was significantly thicker and had significantly larger endothelial cells and a lower endothelial cell density than Rln+/+ mice. Immunohistochemistry demonstrated no significant difference in AQP3 and AQP5 staining in the cornea or other regions between wildtype and Rln-/- mice. mRNA expression of Aqp4 was significantly higher in Rln-/- than in Rln+/+ corneas, whereas Col1a2, Mmp9, Timp1 and Timp2 were significantly decreased. Expression of Aqp1, Aqp4, Aqp5, Vim and Tjp1 was significantly decreased in Rln-/- compared to Rln+/+ uvea. No significant differences in these genes were detected in the retina. Retinal, choroidal and scleral thicknesses were not different and morphology appeared normal. Conclusion: The findings indicate that loss of Rln affects expression of several genes in the uvea and cornea and results in thicker corneas with altered endothelial cells. Many of the gene changes suggest alterations in extracellular matrix and fluid transport between cells.
  • Item
    Thumbnail Image
    Retinal Functional and Structural Changes in the 5xFAD Mouse Model of Alzheimer's Disease
    Lim, JKH ; Li, Q-X ; He, Z ; Vingrys, AJ ; Chinnery, HR ; Mullen, J ; Bui, BV ; Nguyen, CTO (FRONTIERS MEDIA SA, 2020-08-13)
    Alzheimer's disease is characterized by the aberrant deposition of protein in the brain and is the leading cause of dementia worldwide. Increasingly, there have been reports of the presence of these protein hallmarks in the retina. In this study, we assayed the retina of 5xFAD mice, a transgenic model of amyloid deposition known to exhibit dementia-like symptoms with age. Using OCT, we found that the retinal nerve fiber layer was thinner in 5xFAD at 6, 12, and 17 months of age compared with wild-type littermates, but the inner plexiform layer was thicker at 6 months old. Retinal function showed reduced ganglion cell responses to light in 5xFAD at 6, 12, and 17 months of age. This functional loss was observed in the outer retina at 17 months of age but not in younger mice. We showed using immunohistochemistry and ELISA that soluble and insoluble amyloid was present in the retina and brain at all ages. In conclusion, we report that amyloid is present in brain and retina of 5xFAD mice and that the pattern of neuronal dysfunction occurs in the inner retina at the early ages and progresses to encompass the outer retina with age. This implies that the inner retina is more sensitive to amyloid changes in early disease and that the outer retina is also affected with disease progression.
  • Item
    Thumbnail Image
    Characterization of the Circumlimbal Suture Model of Chronic IOP Elevation in Mice and Assessment of Changes in Gene Expression of Stretch Sensitive Channels.
    Zhao, D ; Nguyen, CTO ; Wong, VHY ; Lim, JKH ; He, Z ; Jobling, AI ; Fletcher, EL ; Chinnery, HR ; Vingrys, AJ ; Bui, BV (Frontiers Media SA, 2017)
    To consider whether a circumlimbal suture can be used to chronically elevate intraocular pressure (IOP) in mice and to assess its effect on retinal structure, function and gene expression of stretch sensitive channels. Anesthetized adult C57BL6/J mice had a circumlimbal suture (10/0) applied around the equator of one eye. In treated eyes (n = 23) the suture was left in place for 12 weeks whilst in sham control eyes the suture was removed at day two (n = 17). Contralateral eyes served as untreated controls. IOP was measured after surgery and once a week thereafter. After 12 weeks, electroretinography (ERG) was performed to assess photoreceptor, bipolar cell and retinal ganglion cell (RGC) function. Retinal structure was evaluated using optical coherence tomography. Retinae were processed for counts of ganglion cell density or for quantitative RT-PCR to quantify purinergic (P2x7, Adora3, Entpd1) or stretch sensitive channel (Panx1, Trpv4) gene expression. Immediately after suture application, IOP spiked to 33 ± 3 mmHg. After 1 day, IOP had recovered to 27 ± 3 mmHg. Between weeks 2 and 12, IOP remained elevated above baseline (control 14 ± 1 mmHg, ocular hypertensive 19 ± 1 mmHg). Suture removal at day 2 (Sham) restored IOP to baseline levels, where it remained through to week 12. ERG analysis showed that 12 weeks of IOP elevation reduced photoreceptor (-15 ± 4%), bipolar cell (-15 ± 4%) and ganglion cell responses (-19 ± 6%) compared to sham controls and respective contralateral eyes (untreated). The retinal nerve fiber layer was thinned in the presence of normal total retinal thickness. Ganglion cell density was reduced across all quadrants (superior -12 ± 5%; temporal, -7% ± 2%; inferior -9 ± 4%; nasal -8 ± 5%). Quantitative RT-PCR revealed a significant increase in Entpd1 gene expression (+11 ± 4%), whilst other genes were not significantly altered (P2x7, Adora3, Trpv4, Panx1). Our results show that circumlimbal ligation produces mild chronic ocular hypertension and retinal dysfunction in mice. Consistent with a sustained change to purinergic signaling we found an up-regulation of Entpd1.