Optometry and Vision Sciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Genetics of reticular pseudodrusen in age-related macular degeneration
    Farashi, S ; Ansell, BRE ; Wu, Z ; Abbott, CJ ; Pebay, A ; Fletcher, EL ; Guymer, RH ; Bahlo, M (CELL PRESS, 2022-04)
    Reticular pseudodrusen (RPD) are subretinal deposits and when observed with age-related macular degeneration (AMD) form a distinct phenotype, often associated with late-stage disease. To date, RPD genetic risk-associations overlap six well-established AMD-risk regions. Determining RPD-specific underlying genetic causes by utilising adequate imaging methods should improve our understanding of the pathophysiology of RPD.
  • Item
    Thumbnail Image
    Reticular pseudodrusen: A critical phenotype in age-related macular degeneration
    Wu, Z ; Fletcher, EL ; Kumar, H ; Greferath, U ; Guymer, RH (PERGAMON-ELSEVIER SCIENCE LTD, 2022-05)
    Reticular pseudodrusen (RPD), or subretinal drusenoid deposits (SDD), refer to distinct lesions that occur in the subretinal space. Over the past three decades, their presence in association with age-related macular degeneration (AMD) has become increasingly recognized, especially as RPD have become more easily distinguished with newer clinical imaging modalities. There is also an increasing appreciation that RPD appear to be a critical AMD phenotype, where understanding their pathogenesis will provide further insights into the processes driving vision loss in AMD. However, key barriers to understanding the current evidence related to the independent impact of RPD include the heterogeneity in defining their presence, and failure to account for the confounding impact of the concurrent presence and severity of AMD pathology. This review thus critically discusses the current evidence on the prevalence and clinical significance of RPD and proposes a clinical imaging definition of RPD that will help move the field forward in gathering further key knowledge about this critical phenotype. It also proposes a putative mechanism for RPD formation and how they may drive progression to vision loss in AMD, through examining current evidence and presenting novel findings from preclinical and clinical studies.