Optometry and Vision Sciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 16
  • Item
    Thumbnail Image
    Implantation and Recording of Wireless Electroretinogram and Visual Evoked Potential in Conscious Rats
    Charng, J ; He, Z ; Bui, B ; Vingrys, A ; Ivarsson, M ; Fish, R ; Gurrell, R ; Nguyen, C (JOURNAL OF VISUALIZED EXPERIMENTS, 2016-06-01)
    The full-field electroretinogram (ERG) and visual evoked potential (VEP) are useful tools to assess retinal and visual pathway integrity in both laboratory and clinical settings. Currently, preclinical ERG and VEP measurements are performed with anesthesia to ensure stable electrode placements. However, the very presence of anesthesia has been shown to contaminate normal physiological responses. To overcome these anesthesia confounds, we develop a novel platform to assay ERG and VEP in conscious rats. Electrodes are surgically implanted sub-conjunctivally on the eye to assay the ERG and epidurally over the visual cortex to measure the VEP. A range of amplitude and sensitivity/timing parameters are assayed for both the ERG and VEP at increasing luminous energies. The ERG and VEP signals are shown to be stable and repeatable for at least 4 weeks post surgical implantation. This ability to record ERG and VEP signals without anesthesia confounds in the preclinical setting should provide superior translation to clinical data.
  • Item
    Thumbnail Image
    Reversal of functional loss in a rat model of chronic intraocular pressure elevation
    Liu, H-H ; He, Z ; Nguyen, CTO ; Vingrys, AJ ; Bui, BV (WILEY, 2017-01)
    PURPOSE: This pilot study considered whether intraocular pressure (IOP) lowering could reverse ganglion cell dysfunction in a rat model of chronic ocular hypertension. METHODS: A circumlimbal suture was applied in one eye to induce ocular hypertension (n = 7) in Long-Evans rats. The contralateral eye served as an untreated control. After 8 weeks of IOP elevation the suture was removed to lower IOP for the remaining 7 weeks. Electroretinogram (ERG) and optical coherence tomography (OCT) were measured at baseline, 2, 4, 8, 12 and 15 weeks. Retinae were collected for histology at week 15. RESULTS: In sutured eyes, IOP was elevated by 7-11 mmHg above control eyes (12 ± 0.2 mmHg [standard error of the mean]). Eight weeks of chronic IOP elevation resulted in a reduction of the ganglion cell mediated positive Scotopic Threshold Response (pSTR, -25 ± 7% of baseline), as well as smaller photoreceptor (-7 ± 4%) and bipolar cell mediated responses (-6 ± 5%). After suture removal, IOP recovered to normal. By 15 weeks the a-wave (0 ± 6%), b-wave (-2 ± 6%) and pSTR had recovered back to baseline (from -25 ± 7% to -4 ± 6%). The retinal nerve fiber layer was thinned by -9 ± 3% at week 8 and showed no further decline at week 15 (-10 ± 2%). Cell numbers in the ganglion cell layer were similar between suture removal and control eyes at week 15 (3543 ± 478 vs 4057 ± 476 cells mm-2 ). CONCLUSIONS: The circumlimbal suture model might be a useful platform to study the reversibility of neuronal dysfunction from chronic IOP challenge.
  • Item
    Thumbnail Image
    Conscious Wireless Electroretinogram and Visual Evoked Potentials in Rats
    Charng, J ; Nguyen, CT ; He, Z ; Dang, TM ; Vingrys, AJ ; Fish, RL ; Gurrell, R ; Brain, P ; Bui, BV ; Frishman, L (PUBLIC LIBRARY SCIENCE, 2013-09-12)
    The electroretinogram (ERG, retina) and visual evoked potential (VEP, brain) are widely used in vivo tools assaying the integrity of the visual pathway. Current recordings in preclinical models are conducted under anesthesia, which alters neural physiology and contaminates responses. We describe a conscious wireless ERG and VEP recording platform in rats. Using a novel surgical technique to chronically implant electrodes subconjunctivally on the eye and epidurally over the visual cortex, we are able to record stable and repeatable conscious ERG and VEP signals over at least 1 month. We show that the use of anaesthetics, necessary for conventional ERG and VEP measurements, alters electrophysiology recordings. Conscious visual electrophysiology improves the viability of longitudinal studies by eliminating complications associated with repeated anaesthesia. It will also enable uncontaminated assessment of drug effects, allowing the eye to be used as an effective biomarker of the central nervous system.
  • Item
    Thumbnail Image
    Characterization of the Circumlimbal Suture Model of Chronic IOP Elevation in Mice and Assessment of Changes in Gene Expression of Stretch Sensitive Channels.
    Zhao, D ; Nguyen, CTO ; Wong, VHY ; Lim, JKH ; He, Z ; Jobling, AI ; Fletcher, EL ; Chinnery, HR ; Vingrys, AJ ; Bui, BV (Frontiers Media SA, 2017)
    To consider whether a circumlimbal suture can be used to chronically elevate intraocular pressure (IOP) in mice and to assess its effect on retinal structure, function and gene expression of stretch sensitive channels. Anesthetized adult C57BL6/J mice had a circumlimbal suture (10/0) applied around the equator of one eye. In treated eyes (n = 23) the suture was left in place for 12 weeks whilst in sham control eyes the suture was removed at day two (n = 17). Contralateral eyes served as untreated controls. IOP was measured after surgery and once a week thereafter. After 12 weeks, electroretinography (ERG) was performed to assess photoreceptor, bipolar cell and retinal ganglion cell (RGC) function. Retinal structure was evaluated using optical coherence tomography. Retinae were processed for counts of ganglion cell density or for quantitative RT-PCR to quantify purinergic (P2x7, Adora3, Entpd1) or stretch sensitive channel (Panx1, Trpv4) gene expression. Immediately after suture application, IOP spiked to 33 ± 3 mmHg. After 1 day, IOP had recovered to 27 ± 3 mmHg. Between weeks 2 and 12, IOP remained elevated above baseline (control 14 ± 1 mmHg, ocular hypertensive 19 ± 1 mmHg). Suture removal at day 2 (Sham) restored IOP to baseline levels, where it remained through to week 12. ERG analysis showed that 12 weeks of IOP elevation reduced photoreceptor (-15 ± 4%), bipolar cell (-15 ± 4%) and ganglion cell responses (-19 ± 6%) compared to sham controls and respective contralateral eyes (untreated). The retinal nerve fiber layer was thinned in the presence of normal total retinal thickness. Ganglion cell density was reduced across all quadrants (superior -12 ± 5%; temporal, -7% ± 2%; inferior -9 ± 4%; nasal -8 ± 5%). Quantitative RT-PCR revealed a significant increase in Entpd1 gene expression (+11 ± 4%), whilst other genes were not significantly altered (P2x7, Adora3, Trpv4, Panx1). Our results show that circumlimbal ligation produces mild chronic ocular hypertension and retinal dysfunction in mice. Consistent with a sustained change to purinergic signaling we found an up-regulation of Entpd1.
  • Item
    Thumbnail Image
    Retinal and Cortical Blood Flow Dynamics Following Systemic Blood-Neural Barrier Disruption
    Hui, F ; Nguyen, CTO ; He, Z ; Vingrys, AJ ; Gurrell, R ; Fish, RL ; Bui, BV (FRONTIERS MEDIA SA, 2017-10-12)
    To consider whether imaging retinal vasculature may be used as a marker for cortical vessels, we compared fluorescein angiography flow dynamics before and after pharmacological disruption of blood-neural barriers. Sodium fluorescein (1%, 200 μl/kg) was intravenously delivered in anesthetized adult Long Evans rats (n = 44, brain = 18, retina = 26). In the brain cohort, a cranial window was created to allow direct visualization of surface cortical vessels. Video fluorescein angiography was captured using a rodent retinal camera at 30 frames/second and fluorescence intensity profiles were evaluated for the time to reach 50% brightness (half-rise), 50% decay (half-fall), and the plateau level of remnant fluorescence (offset, %). Cortical vessels fluoresced earlier (artery half-rise: 5.6 ± 0.2 s) and decayed faster (half-fall: 10.3 ± 0.2 s) compared to retinal vasculature. Cortical vessels also had a considerably higher offset, particularly in the capillaries/extravascular space (41.4 ± 2.7%) whereas pigment in the retina reduces such residual fluorescence. In a sub-cohort of animals, sodium deoxycholate (DOC, 0.06 M dissolved in sterile saline, 1 mL) was delivered intravenously to cause simultaneous disruption of the blood-brain and blood-retinal barriers. A separate group received saline as vehicle control. Fluorescein angiography was re-measured at 6 and 24 h after drug infusion and evaluated by comparing flow dynamics to the upper quartile (75%) of the control group. Retinal vasculature was more sensitive to DOC-induced disruption with a higher fluorescence offset at 6 h (47.3 ± 10.6%). A delayed effect was seen in cortical vessels with a higher offset evident only at 24 h (65.6 ± 10.1%). Here we have developed a method to quantitatively compare fluorescein angiography dynamics in the retina and superficial cortical vessels. Our results show that systemic disruption of blood-neural barriers causes vascular leakage in both tissues but earlier in the retina suggesting that pharmacological blood-neural barrier disruption may be detected earlier in the eye than in cortical vasculature.
  • Item
    No Preview Available
    Chronic Hypertension Increases Susceptibility to Acute IOP Challenge in Rats
    He, Z ; Vingrys, AJ ; Armitage, JA ; Nguyen, CT ; Bui, BV (ASSOC RESEARCH VISION OPHTHALMOLOGY INC, 2014-12)
    PURPOSE: To consider the effect of chronic arterial hypertension on the susceptibility of the retina to acute IOP challenge. METHODS: Anesthetized adult Long-Evans rats with normal (n = 5, receiving saline subcutaneously), chronic high blood pressure (BP) for 4 weeks (n = 15, Angiotensin II subcutaneously), and acute high BP for 1 hour (n = 10, Angiotensin II intravenously) underwent IOP elevation (10-120 mm Hg, 5 mm Hg steps each 3 minutes). During IOP elevation, retinal function and ocular blood flow were monitored with electroretinogram (ERG) and laser-Doppler flowmetry (LDF), respectively. Blood pressure was monitored via a femoral artery cannula. Electroretinogram and LDF responses are expressed as a percentage of baseline and compared between groups. The left ventricle and the aorta were dissected to assess the morphologic changes associated with chronic hypertension. RESULTS: Four weeks of hypertension (systolic BP 192 ± 4 mm Hg) produced cardiac hypertrophy and thickened aortic arterial walls compared with controls (systolic BP 112 ± 3 mm Hg). Retinal function was unaltered with chronic hypertension compared with normotensive animals. During acute IOP elevation, ERG and LDF were reduced in a dose-dependent manner in all BP groups. Both chronic and acute hypertension made the ERG and LDF less susceptible to IOP elevation. However, the degree of resistance to IOP elevation was greater in acute hypertension compared with chronic hypertension (P < 0.05). CONCLUSIONS: Acute BP elevation makes retinal function and blood flow less susceptible to IOP elevation. The reduced susceptibility afforded by improved ocular perfusion pressure is compromised after 4 weeks of chronic hypertension.
  • Item
    Thumbnail Image
    The Eye As a Biomarker for Alzheimer's Disease
    Lim, JKH ; Li, Q-X ; He, Z ; Vingrys, AJ ; Wong, VHY ; Currier, N ; Mullen, J ; Bui, BV ; Nguyen, CTO (FRONTIERS MEDIA SA, 2016-11-17)
    Alzheimer's disease (AD) is a progressive neurodegenerative disorder resulting in dementia and eventual death. It is the leading cause of dementia and the number of cases are projected to rise in the next few decades. Pathological hallmarks of AD include the presence of hyperphosphorylated tau and amyloid protein deposition. Currently, these pathological biomarkers are detected either through cerebrospinal fluid analysis, brain imaging or post-mortem. Though effective, these methods are not widely available due to issues such as the difficulty in acquiring samples, lack of infrastructure or high cost. Given that the eye possesses clear optics and shares many neural and vascular similarities to the brain, it offers a direct window to cerebral pathology. These unique characteristics lend itself to being a relatively inexpensive biomarker for AD which carries the potential for wide implementation. The development of ocular biomarkers can have far implications in the discovery of treatments which can improve the quality of lives of patients. In this review, we consider the current evidence for ocular biomarkers in AD and explore potential future avenues of research in this area.
  • Item
    No Preview Available
    Simultaneous Recording of Electroretinography and Visual Evoked Potentials in Anesthetized Rats
    Nguyen, CT ; Tsai, TI ; He, Z ; Vingrys, AJ ; Lee, PY ; Bui, BV (JOURNAL OF VISUALIZED EXPERIMENTS, 2016-07-01)
    The electroretinogram (ERG) and visual evoked potential (VEP) are commonly used to assess the integrity of the visual pathway. The ERG measures the electrical responses of the retina to light stimulation, while the VEP measures the corresponding functional integrity of the visual pathways from the retina to the primary visual cortex following the same light event. The ERG waveform can be broken down into components that reflect responses from different retinal neuronal and glial cell classes. The early components of the VEP waveform represent the integrity of the optic nerve and higher cortical centers. These recordings can be conducted in isolation or together, depending on the application. The methodology described in this paper allows simultaneous assessment of retinal and cortical visual evoked electrophysiology from both eyes and both hemispheres. This is a useful way to more comprehensively assess retinal function and the upstream effects that changes in retinal function can have on visual evoked cortical function.
  • Item
    Thumbnail Image
    Retinal Electrophysiology Is a Viable Preclinical Biomarker for Drug Penetrance into the Central Nervous System
    Charng, J ; He, Z ; Vingrys, AJ ; Fish, RL ; Gurrell, R ; Bui, BV ; Nguyen, CT (HINDAWI LTD, 2016)
    Objective. To examine whether retinal electrophysiology is a useful surrogate marker of drug penetrance into the central nervous system (CNS). Materials and Methods. Brain and retinal electrophysiology were assessed with full-field visually evoked potentials and electroretinograms in conscious and anaesthetised rats following systemic or local administrations of centrally penetrant (muscimol) or nonpenetrant (isoguvacine) compounds. Results. Local injections into the eye/brain bypassed the blood neural barriers and produced changes in retinal/brain responses for both drugs. In conscious animals, systemic administration of muscimol resulted in retinal and brain biopotential changes, whereas systemic delivery of isoguvacine did not. General anaesthesia confounded these outcomes. Conclusions. Retinal electrophysiology, when recorded in conscious animals, shows promise as a viable biomarker of drug penetration into the CNS. In contrast, when conducted under anaesthetised conditions confounds can be induced in both cortical and retinal electrophysiological recordings.
  • Item
    Thumbnail Image
    The effect of intraocular and intracranial pressure on retinal structure and function in rats
    Zhao, D ; He, Z ; Vingrys, AJ ; Bui, BV ; Nguyen, CTO (WILEY, 2015-08)
    An increasing number of studies indicate that the optic nerve head of the eye is sensitive not only to changes in intraocular pressure (IOP), but also to intracranial pressure (ICP). This study examines changes to optic nerve and retinal structure in a rat model in response to a range of IOP and ICP levels using optical coherence tomography. Furthermore, we examine the functional sequelae of these structural changes by quantifying the effect of pressure changes on the electroretinogram. IOP elevation (10-90 mmHg) induces progressive deformation of the optic nerve head and retinal surface (P < 0.05), compression of the retina (P < 0.05) and bipolar cell (b-wave), and retinal ganglion cell (scotopic threshold response) dysfunction (P < 0.05). Simultaneously altering ICP (-5 to 30 mmHg) modifies these IOP-induced responses, with lower ICP (-5 mmHg) exacerbating and higher ICP (15-30 mmHg) ameliorating structural and functional deficits. Thus, the balance between IOP and ICP (optic nerve pressure gradient, ONPG = IOP - ICP) plays an important role in optic nerve integrity. Structural and functional parameters exhibit a two-phase relationship to ONPG, with structural changes being more sensitive to ONPG modification (threshold = -0.6 to 11.3 mmHg) compared with functional changes (threshold = 49.7-54.6 mmHg). These findings have implications for diseases including glaucoma, intracranial hypertension, and long-term exposure to microgravity.