Optometry and Vision Sciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 8 of 8
  • Item
    Thumbnail Image
    The association between retinal vein pulsation pressure and optic disc haemorrhages in glaucoma
    An, D ; House, P ; Barry, C ; Turpin, A ; McKendrick, AM ; Chauhan, BC ; Manners, S ; Graham, SL ; Yu, D-Y ; Morgan, WH ; Bhattacharya, S (PUBLIC LIBRARY SCIENCE, 2017-07-28)
    PURPOSE: To explore the potential relationship between optic disc haemorrhage, venous pulsation pressure (VPP), ocular perfusion pressures and visual field change in glaucomatous and glaucoma suspect eyes. MATERIALS AND METHODS: This prospective observational study examined 155 open angle glaucoma or glaucoma suspect eyes from 78 patients over 5 years. Patients were followed with 3 monthly non-mydriatic disc photographs, 6 monthly standard automated perimetry and annual ophthalmodynamometry. The number of disc haemorrhages in each hemidisc was counted across the study period. Visual field rate of change was calculated using linear regression on the sensitivity of each location over time, then averaged for the matching hemifield. VPP and central retinal artery diastolic pressure (CRADP) were calculated from the measured ophthalmodynanometric forces (ODF). The difference between brachial artery diastolic pressure (DiastBP) and CRADP was calculated as an index of possible flow pathology along the carotid and ophthalmic arteries. RESULTS: Mean age of the cohort was 71.9 ± 7.3 Years. 76 out of 155 eyes (49%) followed for a mean period of 64.2 months had at least 1 disc haemorrhage. 62 (81.6%) of these 76 eyes had recurrent haemorrhages, with a mean of 5.94 recurrences over 64.2 months. Using univariate analysis, rate of visual field change (P<0.0001), VPP (P = 0.0069), alternative ocular perfusion pressure (CRADP-VPP, P = 0.0036), carotid resistance index (DiastBP-CRADP, P = 0.0108) and mean brachial blood pressure (P = 0.0203) were significantly associated with the number of disc haemorrhages. Using multivariate analysis, increased baseline visual field sensitivity (P = 0.0243, coefficient = 0.0275) was significantly associated with disc haemorrhage, in conjunction with higher VPP (P = 0.0029, coefficient = 0.0631), higher mean blood pressure (P = 0.0113, coefficient = 0.0190), higher carotid resistance index (P = 0.0172, coefficient = 0.0566), and rate of visual field loss (P<0.0001, coefficient = -2.0695). CONCLUSIONS: Higher VPP was associated with disc haemorrhage and implicates the involvement of venous pathology, but the effect size is small. Additionally, a greater carotid resistance index suggests that flow pathology in the ophthalmic or carotid arteries may be associated with disc haemorrhage.
  • Item
    Thumbnail Image
    Orientation of the Temporal Nerve Fiber Raphe in Healthy and in Glaucomatous Eyes
    Bedggood, P ; Nguyen, B ; Lakkis, G ; Turpin, A ; McKendrick, AM (ASSOC RESEARCH VISION OPHTHALMOLOGY INC, 2017-08)
    PURPOSE: To determine the normal variation in orientation of the temporal nerve fiber raphe, and the accuracy with which it may be predicted or approximated in lieu of direct measurement. METHODS: We previously described an algorithm for automatic measurement of raphe orientation from optical coherence tomography, using the intensity of vertically oriented macular cubes. Here this method was applied in 49 healthy participants (age 19-81 years) and 51 participants with primary open angle glaucoma (age 51-80 years). RESULTS: Mean fovea-disc-raphe angle was 173.5° ± 3.2° (range = 166°-182°) and 174.2° ± 3.4° (range = 166°-184°) in healthy and glaucoma patients, respectively. Differences between groups were not significant. Fovea-disc-raphe angle was not correlated with age or axial length (P > 0.4), showed some symmetry between eyes in glaucoma (R2 = 0.31, P < 0.001), and little symmetry in the healthy group (P = 0.06). Fovea-disc angle was correlated with fovea-raphe angle (R2 = 0.27, P = 0.0001), but was not a good predictor for raphe orientation (average error = 6.8°). The horizontal axis was a better predictor (average error = 3.2°; maximum error = 9.6°), but still gave approximately twice the error previously reported for direct measurement from macular cubes. CONCLUSIONS: There is substantial natural variation in temporal nerve fiber raphe orientation, which cannot be predicted from age, axial length, relative geometry of the disc and fovea, or the contralateral eye. For applications to which the orientation of the raphe is considered important, it should be measured directly.
  • Item
    Thumbnail Image
    Behavioral measures of cortical hyperexcitability assessed in people who experience visual snow
    McKendrick, AM ; Chan, YM ; Tien, M ; Millist, L ; Clough, M ; Mack, H ; Fielding, J ; White, OB (LIPPINCOTT WILLIAMS & WILKINS, 2017-03-28)
    OBJECTIVE: To determine whether visual perceptual measures in people who experience visual snow are consistent with an imbalance between inhibition and excitation in visual cortex. METHODS: Sixteen patients with visual snow and 18 controls participated. Four visual tasks were included: center-surround contrast matching, luminance increment detection in noise, and global form and global motion coherence thresholds. Neuronal architecture capable of encoding the luminance and contrast stimuli is present within primary visual cortex, whereas the extraction of global motion and form signals requires extrastriate processing. All these tasks have been used previously to investigate the balance between inhibition and excitation within the visual system in both healthy and diseased states. RESULTS: The visual snow group demonstrated reduced center-surround contrast suppression (p = 0.03) and elevated luminance increment thresholds in noise (p = 0.02). Groups did not differ on the global form or global motion task. CONCLUSION: Our study demonstrates that visual perceptual measures involving the suprathreshold processing of contrast and luminance are abnormal in a group of individuals with visual snow. Our data are consistent with elevated excitability in primary visual cortex; however, further research is required to provide more direct evidence for this proposed mechanism. The ability to measure perceptual differences in visual snow reveals promise for the future development of clinical tests to assist in visual snow diagnosis and possibly a method for quantitatively assaying any benefits of treatments.
  • Item
    Thumbnail Image
    Occipital GABA levels in older adults and their relationship to visual perceptual suppression
    Pitchaimuthu, K ; Wu, Q-Z ; Carter, O ; Nguyen, BN ; Ahn, S ; Egan, GF ; McKendrick, AM (NATURE PORTFOLIO, 2017-10-27)
    Several studies have attributed certain visual perceptual alterations in older adults to a likely decrease in GABA (Gamma Aminobutyric Acid) concentration in visual cortex, an assumption based on findings in aged non-human primates. However, to our knowledge, there is no direct evidence for an age-related decrease in GABA concentration in human visual cortex. Here, we estimated visual cortical GABA levels and Glx (combined estimate of glutamate and glutamine) levels using magnetic resonance spectroscopy. We also measured performance for two visual tasks that are hypothesised to be mediated, at least in part, by GABAergic inhibition: spatial suppression of motion and binocular rivalry. Our results show increased visual cortical GABA levels, and reduced Glx levels, in older adults. Perceptual performance differed between younger and older groups for both tasks. When subjects of all ages were combined, visual cortical GABA levels but not Glx levels correlated with perceptual performance. No relationship was found between perception and GABA levels in dorsolateral prefrontal cortex. Perceptual measures and GABA were not correlated when either age group was considered separately. Our results challenge current assumptions regarding neurobiological changes that occur within the aging human visual cortex and their association with certain age-related changes in visual perception.
  • Item
    No Preview Available
    Spatio-temporal patterns of event-related potentials related to audiovisual synchrony judgments in older adults
    Chan, YM ; Pianta, MJ ; Bode, S ; McKendrick, AM (ELSEVIER SCIENCE INC, 2017-07)
    Older adults have altered perception of the relative timing between auditory and visual stimuli, even when stimuli are scaled to equate detectability. To help understand why, this study investigated the neural correlates of audiovisual synchrony judgments in older adults using electroencephalography (EEG). Fourteen younger (18-32 year old) and 16 older (61-74 year old) adults performed an audiovisual synchrony judgment task on flash-pip stimuli while EEG was recorded. All participants were assessed to have healthy vision and hearing for their age. Observers responded to whether audiovisual pairs were perceived as synchronous or asynchronous via a button press. The results showed that the onset of predictive sensory information for synchrony judgments was not different between groups. Channels over auditory areas contributed more to this predictive sensory information than visual areas. The spatial-temporal profile of the EEG activity also indicates that older adults used different resources to maintain a similar level of performance in audiovisual synchrony judgments compared with younger adults.
  • Item
    No Preview Available
    The Effect of Aging and Attention on Visual Crowding and Surround Suppression of Perceived Contrast Threshold
    Malavita, MS ; Vidyasagar, TR ; McKendrick, AM (ASSOC RESEARCH VISION OPHTHALMOLOGY INC, 2017-02)
    PURPOSE: The purpose of this study was to study how, in midperipheral vision, aging affects visual processes that interfere with target detection (crowding and surround suppression) and to determine whether the performance on such tasks are related to visuospatial attention as measured by visual search. METHODS: We investigated the effect of aging on crowding and suppression in detection of a target in peripheral vision, using different types of flanking stimuli. Both thresholds were also obtained while varying the position of the flanker (placed inside or outside of target, relative to fixation). Crowding thresholds were also estimated with spatial uncertainty (jitter). Additionally, we included a visual search task comprising Gabor stimuli to investigate whether performance is related to top-down attention. Twenty young adults (age, 18-32 years; mean age, 26.1 years; 10 males) and 19 older adults (age, 60-74 years; mean age, 70.3 years; 10 males) participated in the study. RESULTS: Older adults showed more surround suppression than the young (F[1,37] = 4.21; P < 0.05), but crowding was unaffected by age. In the younger group, the position of the flanker influenced the strength of crowding, but not the strength of suppression (F[1,39] = 4.11; P < 0.05). Crowding was not affected by spatial jitter of the stimuli. Neither crowding nor surround suppression was predicted by attentional efficiency measured in the visual search task. There was also no significant correlation between crowding and surround suppression. CONCLUSIONS: We show that aging does not affect visual crowding but does increase surround suppression of contrast, suggesting that crowding and surround suppression may be distinct visual phenomena. Furthermore, strengths of crowding and surround suppression did not correlate with each other nor could they be predicted by efficiency of visual search.
  • Item
    Thumbnail Image
    The Proportion of Individuals Likely to Benefit from Customized Optic Nerve Head Structure-Function Mapping
    McKendrick, AM ; Denniss, J ; Wang, YX ; Jonas, JB ; Turpin, A (ELSEVIER SCIENCE INC, 2017-04)
    PURPOSE: Interindividual variance in optic nerve head (ONH) position, axial length, and location of the temporal raphe suggest that customizing mapping between visual field locations and ONH sectors for individuals may be clinically useful. Herein we quantify the proportion of the population predicted to have structure-function mappings that markedly deviate from "average," and thus would benefit from customized mapping. DESIGN: Database study and case report. PARTICIPANTS: Population database of 2836 eyes from the Beijing Eye Study and a single case report of an individual with primary open-angle glaucoma. METHODS: Using the morphometric fundus data of the Beijing Eye Study for 2836 eyes and applying a recently developed model based on axial length and ONH position relative to the fovea, we determined for each measurement location in the 24-2 Humphrey (Carl Zeiss Meditec, Dublin, CA) visual field the proportion of eyes for which, in the customized approach as compared with the generalized approach, the mapped ONH sector was shifted into a different sector. We determined the proportion of eyes for which the mapped ONH location was shifted by more than 15°, 30°, or 60°. MAIN OUTCOME MEASURES: Mapping correspondence between locations in visual field space to localized sectors on the ONH. RESULTS: The largest interindividual differences in mapping are in the nasal step region, where the same visual field location can map to either the superior or inferior ONH, depending on other anatomic features. For these visual field locations, approximately 12% of eyes showed a mapping opposite to conventional expectations. CONCLUSIONS: Anatomically customized mapping shifts the map markedly in approximately 12% of the general population in the nasal step region, where visual field locations can map to the opposite pole of the ONH than conventionally considered. Early glaucomatous damage commonly affects this region; hence, individually matching structure to function may prove clinically useful for the diagnosis and monitoring of progression within individuals.
  • Item
    Thumbnail Image
    Aging alters intraocular but not interocular foveal center surround contrast suppression
    Pitchaimuthu, K ; Nguyen, BN ; McKendrick, AM (ASSOC RESEARCH VISION OPHTHALMOLOGY INC, 2017-01)
    Numerous previous studies have shown that healthy aging results in increased foveal center surround contrast suppression when the center and surround patterns are presented to both eyes. The mechanistic cause of this observation is not well established. Neurophysiological and psychophysical studies have shown that different mechanisms of parafoveal center surround suppression can be tapped by manipulating viewing conditions to present the center and surround to the same eye (intraocular viewing) or to different eyes (interocular viewing), or by manipulating stimulus parameters such as duration. Here, we tested intraocular and interocular foveal center surround contrast suppression for stimuli of 40 ms and 200 ms duration in 18 younger and 18 older adults. For both groups, foveal intraocular center surround contrast suppression decreased with longer stimulus duration whereas interocular surround suppression did not, confirming contributions from separate mechanisms to these forms of suppression. Intraocular center surround contrast suppression was increased in older adults compared to younger adults; however, interocular suppression was similar in both groups. Our results indicate that aging differentially affects distinct forms of suppression arising at various levels of the visual pathway.