Optometry and Vision Sciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 52
  • Item
    No Preview Available
    Normative retrobulbar measurements of the optic nerve using ultra high field magnetic resonance imaging
    Nguyen, BN ; Cleary, JO ; Glarin, R ; Kolbe, SC ; Moffat, BA ; Ordidge, RJ ; Bui, BV ; McKendrick, AM (Association for Research in Vision and Ophthalmology, 2019-07-01)
    Purpose : We exploit the improved spatial resolution and signal-to-noise gain of ultra high field (7T) magnetic resonance imaging (MRI) with a dedicated eye coil for more accurate morphometric measurements of the optic nerve ~2.5mm behind the globe. Methods : Coronal T2-weighted oblique images (TR=2000ms, TE=64ms, FOV=155mm, matrix=384 x 384, slice thickness=0.7mm, scan time=2’34”) through the optic nerve were obtained in 21 healthy adults (20-41 years, 11 emmetropes: +0.75 to -0.50D, 10 myopes: -4.5 to -12D) using a 7T Siemens Magnetom scanner (Erlangen, Germany) and 6-channel eye coil (MRI.TOOLS GmbH, Berlin, Germany). Horizontal and vertical outer diameter of the optic nerve, subarachnoid space (fluid gap) and optic sheath were measured by hand using biomedical imaging software (OsiriX, Pixmeo, Switzerland) (Figure). Significant motion artefacts were avoided with customised fixation and preparation techniques. Results : Horizontal and vertical measurements were similar so were averaged. Right and left eye diameters did not differ and were highly correlated (optic nerve: Pearson r=0.9, p<0.001; fluid gap: r=0.8, p<0.001; optic sheath: r=0.7, p<0.001); hence we report left eye data only. Optic nerve diameter (average of horizontal and vertical diameters) ranged from 2.8-4.1mm in emmetropes and 1.5-4.2mm in myopes and correlated with refractive error (Spearman r=0.46, p=0.04). Similarly, fluid gap diameter (emmetropes: 3.6-5.5mm, myopes: 2.5-5.6mm), but not optic sheath diameter (emmetropes: 4.5-6.8mm, myopes: 4.2-6.8mm), correlated with refractive error (r=0.47, p=0.03). Conclusions : Ultra high field MRI with thinner slices enables more accurate demarcation of the optic nerve, surrounding fluid/subarachnoid space and optic sheath without overlapping of neighbouring anatomy (minimal partial volume artefact). Our 7T MRI-derived normative measurements of optic nerve, fluid gap and sheath diameter are comparable with published reports in healthy observers obtained at conventional MRI magnetic fields (1.5-3T). Our findings suggest a trend for retrobulbar optic nerve and subarachnoid space, but not optic sheath, to be smaller in high myopes.
  • Item
    Thumbnail Image
    Optic nerve tissue displacement during mild intraocular pressure elevation: its relationship to central corneal thickness and corneal hysteresis
    Bedggood, P ; Tanabe, F ; McKendrick, AM ; Turpin, A ; Anderson, AJ ; Bui, BV (WILEY, 2018-07)
    PURPOSE: To determine the extent to which (1) optic nerve tissue is displaced following mild acute elevation of intraocular pressure, and (2) clinically accessible measures at the anterior eye can be used as a surrogate for such displacements. METHODS: We imaged the optic disc of 21 healthy subjects before and after intraocular pressure (IOP) elevation of ~10 mmHg delivered by ophthalmodynamometry. Steady-state tissue displacement during IOP elevation was assessed axially from OCT data, and laterally from SLO data. Recovery from IOP elevation was assessed by tracking a single vertical B-scan through the cup centre. Anatomical structures were demarcated by three masked clinicians to determine lateral shifts for temporal cup edge and central disc vessels, and axial shifts of disc surface and anterior lamina cribrosa. Spatial maps of deformation were constructed within the demarcated cup and disc to assess within-tissue displacement. Measured displacements were correlated with corneal hysteresis, corneal thickness, and IOP. RESULTS: The temporal cup edge moved more temporally with higher baseline IOP (R2  = 0.33, p = 0.006) and with lesser elevation of IOP (R2  = 0.43, p = 0.001); it moved more superiorly for thinner corneas (R2  = 0.35, p = 0.007). Thinner corneas also produced less within-cup deformation, relative to that of the disc (R2  = 0.39, p = 0.004). Axial displacement of the lamina and lateral displacement of vessels were often substantial (lamina 20 ± 15 μm, range 1-60 μm; vessels 37 ± 25 μm, range 2-102 μm) but did not correlate with measured parameters. Recovery from IOP elevation did not take more than 300-400 ms in any subject. CONCLUSIONS: Mild acute elevation of IOP produces large and rapidly reversible shifts in optic nerve tissue in young, healthy eyes. The resulting degree, direction and spatial distribution of cup movement are associated with IOP status and corneal thickness, but not corneal hysteresis.
  • Item
    No Preview Available
    Central and peripheral motion perception under mesopic conditions in older adults
    Sepulveda, JA ; Anderson, AJ ; Wood, JM ; McKendrick, AM (Association for Research in Vision and Ophthalmology (ARVO), 2020-10-20)
  • Item
    Thumbnail Image
    Ageing elevates peripheral spatial suppression of motion regardless of divided attention
    Park, S ; Nguyen, BN ; McKendrick, AM (WILEY, 2020-03)
    PURPOSE: It is more difficult to perceive the direction of motion of larger, high contrast patterns than smaller, low contrast patterns due to spatial suppression. Spatial suppression of motion is considered important to the segmentation of moving objects in the visual environment. Previous studies have shown that such spatial suppression of motion is reduced in older adults in central vision, to the extent that older adults can have better sensitivity than younger adults for foveally presented stimuli. Our study was designed to explore whether spatial suppression of motion is similarly reduced for older adults in parafoveal regions and whether divided attention impacts on suppression strength because attention is known to impact on spatial interactions. METHODS: Twenty younger (19-34 years) and 18 older (61-77 years) adults completed a single task, where observers identified the direction of a drifting Gabor patch of variable size (σ of the Gaussian envelope = 0.5, 1, 2, 3, 4°) presented at 10 degrees of visual angle while observing a central fixation marker, and a dual task, where observers were required to divide their attention across two stimuli, the peripheral drifting Gabor patch and a central rapid serial visual presentation (RSVP) stream. RESULTS: Older adults showed increased spatial suppression of motion relative to younger adults for both tasks (main effect of group: p < 0.001). Dividing attention elevated thresholds for both age groups to a similar extent (main effect of attention: p = 0.002), but did not specifically alter spatial interactions (group x attention interaction: p = 0.13). CONCLUSIONS: Older adults require significantly longer than younger adults to correctly identify stimulus motion, and demonstrate increased spatial suppression of motion, in peripheral vision. When considered alongside previous evidence for reduced suppression for central fixation, our study provides evidence for substantial differences between foveal and parafoveal mechanisms of spatial suppression.
  • Item
    Thumbnail Image
    Increasing the Spatial Resolution of Visual Field Tests Without Increasing Test Duration: An Evaluation of ARREST
    Muthusamy, V ; Turpin, A ; Walland, MJ ; Nguyen, BN ; McKendrick, AM (Association for Research in Vision and Ophthalmology, 2020-12)
    Purpose: The Australian Reduced Range Extended Spatial Test (ARREST) approach was designed to improve visual field spatial resolution while maintaining a similar test duration to clinically used testing algorithms. ARREST does not completely threshold visual field locations with sensitivity < 17 dB, and uses the presentations saved to test new locations in areas of steep gradient within the visual field. Previous assessments of ARREST's performance have used computer simulation. In this study, we cross-sectionally assessed the performance of ARREST in people with visual field loss. Methods: We tested 23 people with glaucoma (mean age: 71 ± 8 years) with established visual field loss. Three visual field procedures were performed using the Open Perimetry Interface: cZEST and ARREST on the Octopus 900 perimeter (Haag-Streit AG, Switzerland), and a reference standard (best available estimate [BAE]) on the Compass perimeter (CenterVue SpA, Italy). ARREST was compared against the cZEST and the BAE. Results: On average, ARREST added seven new locations (range = 0-15) to a visual field test. There was no significant difference in the number of stimulus presentations between procedures (mean = 259 ± 25 [ARREST] vs. 261 ± 25 [cZEST], P = 0.78). In classifying threshold values < 17 dB, ARREST performed similarly when compared against BAE. Conclusions: This study provides empirical evidence to support conclusions from previous computer simulations that ARREST can be used to increase spatial sampling in regions of interest without increasing test time. Translational Relevance: ARREST is a new approach that augments current visual field testing procedures to provide better spatial description of visual field defects without increasing test duration.
  • Item
    Thumbnail Image
    The association between retinal vein pulsation pressure and optic disc haemorrhages in glaucoma
    An, D ; House, P ; Barry, C ; Turpin, A ; McKendrick, AM ; Chauhan, BC ; Manners, S ; Graham, SL ; Yu, D-Y ; Morgan, WH ; Bhattacharya, S (PUBLIC LIBRARY SCIENCE, 2017-07-28)
    PURPOSE: To explore the potential relationship between optic disc haemorrhage, venous pulsation pressure (VPP), ocular perfusion pressures and visual field change in glaucomatous and glaucoma suspect eyes. MATERIALS AND METHODS: This prospective observational study examined 155 open angle glaucoma or glaucoma suspect eyes from 78 patients over 5 years. Patients were followed with 3 monthly non-mydriatic disc photographs, 6 monthly standard automated perimetry and annual ophthalmodynamometry. The number of disc haemorrhages in each hemidisc was counted across the study period. Visual field rate of change was calculated using linear regression on the sensitivity of each location over time, then averaged for the matching hemifield. VPP and central retinal artery diastolic pressure (CRADP) were calculated from the measured ophthalmodynanometric forces (ODF). The difference between brachial artery diastolic pressure (DiastBP) and CRADP was calculated as an index of possible flow pathology along the carotid and ophthalmic arteries. RESULTS: Mean age of the cohort was 71.9 ± 7.3 Years. 76 out of 155 eyes (49%) followed for a mean period of 64.2 months had at least 1 disc haemorrhage. 62 (81.6%) of these 76 eyes had recurrent haemorrhages, with a mean of 5.94 recurrences over 64.2 months. Using univariate analysis, rate of visual field change (P<0.0001), VPP (P = 0.0069), alternative ocular perfusion pressure (CRADP-VPP, P = 0.0036), carotid resistance index (DiastBP-CRADP, P = 0.0108) and mean brachial blood pressure (P = 0.0203) were significantly associated with the number of disc haemorrhages. Using multivariate analysis, increased baseline visual field sensitivity (P = 0.0243, coefficient = 0.0275) was significantly associated with disc haemorrhage, in conjunction with higher VPP (P = 0.0029, coefficient = 0.0631), higher mean blood pressure (P = 0.0113, coefficient = 0.0190), higher carotid resistance index (P = 0.0172, coefficient = 0.0566), and rate of visual field loss (P<0.0001, coefficient = -2.0695). CONCLUSIONS: Higher VPP was associated with disc haemorrhage and implicates the involvement of venous pathology, but the effect size is small. Additionally, a greater carotid resistance index suggests that flow pathology in the ophthalmic or carotid arteries may be associated with disc haemorrhage.
  • Item
    Thumbnail Image
    Improving Spatial Resolution and Test Times of Visual Field Testing Using ARREST
    Turpin, A ; Morgan, WH ; Mckendrick, AM (ASSOC RESEARCH VISION OPHTHALMOLOGY INC, 2018-09)
    PURPOSE: Correctly classifying progression in moderate to advanced glaucoma is difficult. Pointwise visual field test-retest variability is high for sensitivities below approximately 20 dB; hence, reliably detecting progression requires many test repeats. We developed a testing approach that does not attempt to threshold accurately in areas with high variability, but instead expends presentations increasing spatial fidelity. METHODS: Our visual field procedure Australian Reduced Range Extended Spatial Test (ARREST; a variant of the Bayesian procedure Zippy Estimation by Sequential Testing [ZEST]) applies the following approach: once a location has an estimated sensitivity of <17 dB (a "defect"), it is checked that it is not an absolute defect (<0 dB, "blind"). Saved presentations are used to test extra locations that are located near the defect. Visual field deterioration events are either: (1) decreasing in the range of 40 to 17 dB, (2) decreasing from >17 dB to "defect", or (3) "defect" to blind. To test this approach we used an empirical database of progressing moderate-advanced 24-2 visual fields (121 eyes) that we "reverse engineered" to create visual field series that progressed from normal to the end observed field. ARREST and ZEST were run on these fields with test accuracy, presentation time, and ability to detect progression compared. RESULTS: With specificity for detecting progression matched at 95%, ZEST and ARREST showed similar sensitivity for detecting progression. However, ARREST used approximately 25% to 40% fewer test presentations to achieve this result in advanced visual field damage. ARREST spatially defined the visual field deficit with greater precision than ZEST due to the addition of non-24-2 locations. CONCLUSIONS: Spending time trying to accurately measure visual field locations that have high variability is not productive. Our simulations indicate that giving up attempting to quantify size III white-on-white sensitivities below 17 dB and using the presentations saved to test extra locations should better describe progression in moderate-to-advanced glaucoma in shorter time. TRANSLATIONAL RELEVANCE: ARREST is a new visual field test algorithm that provides better spatial definition of visual field defects in faster test time than current procedures. This outcome is achieved by substituting inaccurate quantification of sensitivities <17 dB with new spatial locations.
  • Item
    Thumbnail Image
    Relating excitatory and inhibitory neurochemicals to visual perception: A magnetic resonance study of occipital cortex between migraine events
    Chan, YM ; Pitchaimuthu, K ; Wu, Q-Z ; Carter, OL ; Egan, GF ; Badcock, DR ; McKendrick, AM ; Solomon, SG (PUBLIC LIBRARY SCIENCE, 2019-07-10)
    Certain perceptual measures have been proposed as indirect assays of brain neurochemical status in people with migraine. One such measure is binocular rivalry, however, previous studies have not measured rivalry characteristics and brain neurochemistry together in people with migraine. This study compared spectroscopy-measured levels of GABA and Glx (glutamine and glutamate complex) in visual cortex between 16 people with migraine and 16 non-headache controls, and assessed whether the concentration of these neurochemicals explains, at least partially, inter-individual variability in binocular rivalry perceptual measures. Mean Glx level was significantly reduced in migraineurs relative to controls, whereas mean occipital GABA levels were similar between groups. Neither GABA levels, nor Glx levels correlated with rivalry percept duration. Our results thus suggest that the previously suggested relationship between rivalry percept duration and GABAergic inhibitory neurotransmitter concentration in visual cortex is not strong enough to enable rivalry percept duration to be reliably assumed to be a surrogate for GABA concentration, at least in the context of healthy individuals and those that experience migraine.
  • Item
    Thumbnail Image
    Differential aging effects in motion perception tasks for central and peripheral vision
    Sepulveda, JA ; Anderson, AJ ; Wood, JM ; McKendrick, AM (ASSOC RESEARCH VISION OPHTHALMOLOGY INC, 2020-05)
    The perception of motion is considered critical for performing everyday tasks, such as locomotion and driving, and relies on different levels of visual processing. However, it is unclear whether healthy aging differentially affects motion processing at specific levels of processing, or whether performance at central and peripheral spatial eccentricities is altered to the same extent. The aim of this study was to explore the effects of aging on hierarchically different components of motion processing: the minimum displacement of dots to perceive motion (Dmin), the minimum contrast and speed to determine the direction of motion, spatial surround suppression of motion, global motion coherence (translational and radial), and biological motion. We measured motion perception in both central vision and at 15° eccentricity, comparing performance in 20 older (60-79 years) and 20 younger (19-34 years) adults. Older adults had significantly elevated thresholds, relative to younger adults, for motion contrast, speed, Dmin, and biological motion. The differences between younger and older participants were of similar magnitude in central and peripheral vision, except for surround suppression of motion, which was weaker in central vision for the older group, but stronger in the periphery. Our findings demonstrate that the effects of aging are not uniform across all motion tasks. Whereas the performance of some tasks in the periphery can be predicted from the results in central vision, the effects of age on surround suppression of motion shows markedly different characteristics between central and peripheral vision.
  • Item
    Thumbnail Image
    A Depth-Dependent Integrated VF Simulation for Analysis and Visualization of Glaucomatous VF Defects
    Liu, P ; Mckendrick, AM ; Ma-Wyatt, A ; Turpin, A (ASSOC RESEARCH VISION OPHTHALMOLOGY INC, 2020-02)
    PURPOSE: Visual fields (VF) are measured monocularly at a single depth, yet real-life activities require people to interact with objects binocularly at multiple depths. To better characterize visual functioning in clinical vision conditions such as glaucoma, analyzing visual impairment in a depth-dependent fashion is required. We developed a depth-dependent integrated VF (DD-IVF) simulation and demonstrated its usefulness by evaluating DD-IVF defects associated with 12 glaucomatous archetypes of 24-2 VF. METHODS: The 12 archetypes included typical variants of superior and inferior nasal steps, arcuate and altitudinal defects, temporal wedge, biarcuate, and intact VFs. DD-IVF simulation maps the monocular 24-2 VF archetypes to binocular ones as a function of depth by incorporating three parameters of fixation, object, and interpupillary distances. At each location and depth plane, sensitivities are linearly interpolated from corresponding locations in monocular VF and returned as the higher value of the two. RESULTS: The simulation produced 144 DD-IVFs for multiple depths from combinations of 12 glaucomatous archetypes. The DD-IVFs are included as a Shiny app in the binovisualfields package. The number of impaired locations in the DD-IVFs varied according to the overlap of VF loss between eyes. CONCLUSIONS: Our DD-IVF program revealed binocular functional visual defects associated with glaucomatous archetypes of the 24-2 pattern and is designed to do the same for empirically measured VFs. The comparison of identified visual impairments across depths may be informative for future empirical exploration of functional visual impairments in depth in glaucoma and other conditions leading to bilateral VF loss. TRANSLATIONAL RELEVANCE: Our DD-IVF program can reveal depth-dependent functional visual defects for clinical vision conditions where 24-2 test patterns are available.