Optometry and Vision Sciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    Thumbnail Image
    Characterization of the Circumlimbal Suture Model of Chronic IOP Elevation in Mice and Assessment of Changes in Gene Expression of Stretch Sensitive Channels.
    Zhao, D ; Nguyen, CTO ; Wong, VHY ; Lim, JKH ; He, Z ; Jobling, AI ; Fletcher, EL ; Chinnery, HR ; Vingrys, AJ ; Bui, BV (Frontiers Media SA, 2017)
    To consider whether a circumlimbal suture can be used to chronically elevate intraocular pressure (IOP) in mice and to assess its effect on retinal structure, function and gene expression of stretch sensitive channels. Anesthetized adult C57BL6/J mice had a circumlimbal suture (10/0) applied around the equator of one eye. In treated eyes (n = 23) the suture was left in place for 12 weeks whilst in sham control eyes the suture was removed at day two (n = 17). Contralateral eyes served as untreated controls. IOP was measured after surgery and once a week thereafter. After 12 weeks, electroretinography (ERG) was performed to assess photoreceptor, bipolar cell and retinal ganglion cell (RGC) function. Retinal structure was evaluated using optical coherence tomography. Retinae were processed for counts of ganglion cell density or for quantitative RT-PCR to quantify purinergic (P2x7, Adora3, Entpd1) or stretch sensitive channel (Panx1, Trpv4) gene expression. Immediately after suture application, IOP spiked to 33 ± 3 mmHg. After 1 day, IOP had recovered to 27 ± 3 mmHg. Between weeks 2 and 12, IOP remained elevated above baseline (control 14 ± 1 mmHg, ocular hypertensive 19 ± 1 mmHg). Suture removal at day 2 (Sham) restored IOP to baseline levels, where it remained through to week 12. ERG analysis showed that 12 weeks of IOP elevation reduced photoreceptor (-15 ± 4%), bipolar cell (-15 ± 4%) and ganglion cell responses (-19 ± 6%) compared to sham controls and respective contralateral eyes (untreated). The retinal nerve fiber layer was thinned in the presence of normal total retinal thickness. Ganglion cell density was reduced across all quadrants (superior -12 ± 5%; temporal, -7% ± 2%; inferior -9 ± 4%; nasal -8 ± 5%). Quantitative RT-PCR revealed a significant increase in Entpd1 gene expression (+11 ± 4%), whilst other genes were not significantly altered (P2x7, Adora3, Trpv4, Panx1). Our results show that circumlimbal ligation produces mild chronic ocular hypertension and retinal dysfunction in mice. Consistent with a sustained change to purinergic signaling we found an up-regulation of Entpd1.
  • Item
    Thumbnail Image
    Effect of acute intraocular pressure challenge on rat retinal and cortical function
    Tsai, Tina I. ; Bui, Bang V. ; Vingrys, Algis J. (Association for Research in Vision and Ophthalmology (ARVO), 2014)
    Purpose: The global or gross response index of visual performance measured from the eye does not necessarily translate to global responses measured from the brain. A better understanding of this relationship would facilitate the monitoring of disease models that affect the visual pathway. We consider whether rod- and cone-retino-cortical-pathways are equally affected by acute IOP elevation. Methods: Acute, stepwise IOP elevation (10, 30, 40, 50, 60, 70 mm Hg) was induced in anesthetized dark- (N = 8) and light-adapted pigmented rats (N = 6). Electroretinogram (ERG) and visual evoked potentials (VEP) were simultaneously measured after 10 minutes at each step. Relative amplitudes (treated/baseline, %) as a function of IOP level were described with a cumulative normal function. Results: Our results showed decline in scotopic and photopic ERGs with IOP elevation. Photopic ERG responses were less sensitive to IOP challenge than scotopic ERG responses. Despite significant reductions of ganglion cell–mediated waveforms at 70 mm Hg, the VEP showed only subtle decreases in amplitude. Intraocular pressure elevation produced similar effects on rod- and cone-mediated VEP waveforms. Conclusions: We show that cone signals are less sensitive than rod ERGs to acute IOP challenge. Also, retinal signals are more sensitive than are cortical signals to IOP stress, suggesting that cortical processing may act to salvage reductions expected from attenuated retinal output.
  • Item
    Thumbnail Image
    Glial and neuronal dysfunction in streptozotocin-induced diabetic rats.
    Wong, VHY ; Vingrys, AJ ; Bui, BV (Springer Science and Business Media LLC, 2011-06)
    Neuronal dysfunction has been noted very soon after the induction of diabetes by streptozotocin injection in rats. It is not clear from anatomical evidence whether glial cell dysfunction accompanies the well-documented neuronal deficit. Here, we isolate the Müller cell driven slow-P3 component of the full-field electroretinogram and show that it is attenuated at 4 weeks following the onset of streptozotocin-hyperglycaemia. We also found a concurrent reduction in the sensitivity of the phototransduction cascade, as well as in the components of the electroretinogram known to indicate retinal ganglion cell and amacrine cell integrity. Our data support the idea that neuronal and Müller cell dysfunction occurs at the same time in streptozotocin-induced hyperglycaemia.
  • Item
    Thumbnail Image
    H Barry Collin Research Medal awarded to Professor Anthony J Adams
    Cole, BL (TAYLOR & FRANCIS LTD, 2012-05-01)