Optometry and Vision Sciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 86
  • Item
    Thumbnail Image
    Expression of muscarinic receptor subtypes in tree shrew ocular tissues and their regulation during the development of myopia
    McBrien, NA ; Jobling, AI ; Truong, HT ; Cottriall, CL ; Gentle, A (MOLECULAR VISION, 2009-03-02)
    PURPOSE: Muscarinic receptors are known to regulate several important physiologic processes in the eye. Antagonists to these receptors such as atropine and pirenzepine are effective at stopping the excessive ocular growth that results in myopia. However, their site of action is unknown. This study details ocular muscarinic subtype expression within a well documented model of eye growth and investigates their expression during early stages of myopia induction. METHODS: Total RNA was isolated from tree shrew corneal, iris/ciliary body, retinal, choroidal, and scleral tissue samples and was reverse transcribed. Using tree shrew-specific primers to the five muscarinic acetylcholine receptor subtypes (CHRM1-CHRM5), products were amplified using polymerase chain reaction (PCR) and their identity confirmed using automated sequencing. The expression of the receptor proteins (M1-M5) were also explored in the retina, choroid, and sclera using immunohistochemistry. Myopia was induced in the tree shrew for one or five days using monocular deprivation of pattern vision, and the expression of the receptor subtypes was assessed in the retina, choroid, and sclera using real-time PCR. RESULTS: All five muscarinic receptor subtypes were expressed in the iris/ciliary body, retina, choroid, and sclera while gene products corresponding to CHRM1, CHRM3, CHRM4, and CHRM5 were present in the corneal samples. The gene expression data were confirmed by immunohistochemistry with the M1-M5 proteins detected in the retina, choroid, and sclera. After one or five days of myopia development, muscarinic receptor gene expression remained unaltered in the retinal, choroidal, and scleral tissue samples. CONCLUSIONS: This study provides a comprehensive profile of muscarinic receptor gene and protein expression in tree shrew ocular tissues with all receptor subtypes found in tissues implicated in the control of eye growth. Despite the efficacy of muscarinic antagonists at inhibiting myopia development, the genes of the muscarinic receptor subtypes are neither regulated early in myopia (before measurable axial elongation) nor after significant structural change.
  • Item
    Thumbnail Image
    A comparison of microelectrodes for a visual cortical prosthesis using finite element analysis.
    Brunton, E ; Lowery, AJ ; Rajan, R (Frontiers Media SA, 2012)
    Altering the geometry of microelectrodes for use in a cortical neural prosthesis modifies the electric field generated in tissue, thereby affecting electrode efficacy and tissue damage. Commonly, electrodes with an active region located at the tip ("conical" electrodes) are used for stimulation of cortex but there is argument to believe this geometry may not be the best. Here we use finite element analysis to compare the electric fields generated by three types of electrodes, a conical electrode with exposed active tip, an annular electrode with active area located up away from the tip, and a striped annular electrode where the active annular region has bands of insulation interrupting the full active region. The results indicate that the current density on the surface of the conical electrodes can be up to 10 times greater than the current density on the annular electrodes of the same height, which may increase the propensity for tissue damage. However choosing the most efficient electrode geometry in order to reduce power consumption is dependent on the distance of the electrode to the target neurons. If neurons are located within 10 μm of the electrode, then a small conical electrode would be more power efficient. On the other hand if the target neuron is greater than 500 μm away-as happens normally when insertion of an array of electrodes into cortex results in a "kill zone" around each electrode due to insertion damage and inflammatory responses-then a large annular electrode would be more efficient.
  • Item
    Thumbnail Image
    Driver self-regulation and depressive symptoms in cataract patients awaiting surgery: a cross-sectional study
    Fraser, ML ; Meuleners, LB ; Ng, JQ ; Morlet, N (BMC, 2013-09-10)
    BACKGROUND: Cataract is an extremely common visual condition of ageing. Evidence suggests that visual impairment influences driving patterns and self-regulatory behavior among older drivers. However, little is known about the psychological effects of driver self-regulation among older drivers. Therefore, this study aimed to describe driver self-regulation practices among older bilateral cataract patients and to determine the association between self-regulation and depressive symptoms. METHODS: Ninety-nine older drivers with bilateral cataract were assessed the week before first eye cataract surgery. Driver self-regulation was measured via the Driving Habits Questionnaire. Depressive symptoms were assessed using the 20-item Center for Epidemiological Studies Depression Scale. Visual, demographic and cognitive data were also collected. Differences between self-regulators and non self-regulators were described and linear regression modeling used to determine the association between driver self-regulation and depressive symptoms score. RESULTS: Among cataract patients, 48% reported self-regulating their driving to avoid at least one challenging situation. The situations most commonly avoided were driving at night (40%), on the freeway (12%), in the rain (9%) and parallel parking (8%). Self-regulators had significantly poorer contrast sensitivity in their worse eye than non self-regulators (p = 0.027). Driver self-regulation was significantly associated with increased depressive symptoms after controlling for potential confounding factors (p = 0.002). CONCLUSIONS: Driver self-regulation was associated with increased depressive symptoms among cataract patients. Further research should investigate this association among the general older population. Self-regulation programs aimed at older drivers may need to incorporate mental health elements to counteract unintended psychological effects.
  • Item
    No Preview Available
    Clinical Applications of Wavefront Refraction
    Bruce, AS ; Catania, LJ (LIPPINCOTT WILLIAMS & WILKINS, 2014-10)
    PURPOSE: To determine normative reference ranges for higher-order wavefront error (HO-WFE), compare these values with those in common ocular pathologies, and evaluate treatments. METHODS: A review of 17 major studies on HO-WFE was made, involving data for a total of 31,605 subjects. The upper limit of the 95% confidence interval (CI) for HO-WFE was calculated from the most comprehensive of these studies using normal healthy patients aged 20 to 80 years. There were no studies identified using the natural pupil size for subjects, and for this reason, the HO-WFE was tabulated for pupil diameters of 3 to 7 mm. Effects of keratoconus, pterygium, cataract, and dry eye on HO-WFE were reviewed and treatment efficacy was considered. RESULTS: The calculated upper limit of the 95% CI for HO-WFE in a healthy normal 35-year-old patient with a mesopic pupil diameter of 6 mm would be 0.471 μm (471 nm) root-mean-square or less. Although the normal HO-WFE increases with age for a given pupil size, it is not yet completely clear how the concurrent influence of age-related pupillary miosis affects these findings. Abnormal ocular conditions such as keratoconus can induce a large HO-WFE, often in excess of 3.0 μm, particularly attributed to coma. For pterygium or cortical cataract, a combination of coma and trefoil was more commonly induced. Nuclear cataract can induce a negative spherical HO-WFE, usually in excess of 1.0 μm. CONCLUSIONS: The upper limit of the 95% CI for HO-WFE root-mean-square is about 0.5 μm with normal physiological pupil sizes. With ocular pathologies, HO-WFE can be in excess of 1.0 μm, although many devices and therapeutic and surgical treatments are reported to be highly effective at minimizing HO-WFE. More accurate normative reference ranges for HO-WFE will require future studies using the subjects' natural pupil size.
  • Item
    No Preview Available
    A computational study of how orientation bias in the lateral geniculate nucleus can give rise to orientation selectivity in primary visual cortex
    Kuhlmann, L ; Vidyasagar, TR (FRONTIERS MEDIA SA, 2011)
    Controversy remains about how orientation selectivity emerges in simple cells of the mammalian primary visual cortex. In this paper, we present a computational model of how the orientation-biased responses of cells in lateral geniculate nucleus (LGN) can contribute to the orientation selectivity in simple cells in cats. We propose that simple cells are excited by lateral geniculate fields with an orientation-bias and disynaptically inhibited by unoriented lateral geniculate fields (or biased fields pooled across orientations), both at approximately the same retinotopic co-ordinates. This interaction, combined with recurrent cortical excitation and inhibition, helps to create the sharp orientation tuning seen in simple cell responses. Along with describing orientation selectivity, the model also accounts for the spatial frequency and length-response functions in simple cells, in normal conditions as well as under the influence of the GABA(A) antagonist, bicuculline. In addition, the model captures the response properties of LGN and simple cells to simultaneous visual stimulation and electrical stimulation of the LGN. We show that the sharp selectivity for stimulus orientation seen in primary visual cortical cells can be achieved without the excitatory convergence of the LGN input cells with receptive fields along a line in visual space, which has been a core assumption in classical models of visual cortex. We have also simulated how the full range of orientations seen in the cortex can emerge from the activity among broadly tuned channels tuned to a limited number of optimum orientations, just as in the classical case of coding for color in trichromatic primates.
  • Item
    No Preview Available
    Can HMG Co-A reductase inhibitors ("statins") slow the progression of age-related macular degeneration? The Age-Related Maculopathy Statin Study (ARMSS)
    Guymer, RH ; Dimitrov, PN ; Varsamidis, M ; Lim, LL ; Baird, PN ; Vingrys, AJ ; Robman, L (DOVE MEDICAL PRESS LTD, 2008)
    Age-related macular degeneration (AMD) is responsible for the majority of visual impairment in the Western world. The role of cholesterol-lowering medications, HMG Co-A reductase inhibitors or statins, in reducing the risk of AMD or of delaying its progression has not been fully investigated. A 3-year prospective randomized controlled trial of 40 mg simvastatin per day compared to placebo in subjects at high risk of AMD progression is described. This paper outlines the primary aims of the Age-Related Maculopathy Statin Study (ARMSS), and the methodology involved. Standardized clinical grading of macular photographs and comparison of serial macular digital photographs, using the International grading scheme, form the basis for assessment of primary study outcomes. In addition, macular function is assessed at each visit with detailed psychophysical measurements of rod and cone function. Information collected in this study will assist in the assessment of the potential value of HMG Co-A reductase inhibitors (statins) in reducing the risk of AMD progression.
  • Item
    Thumbnail Image
    Direct visualization and characterization of erythrocyte flow in human retinal capillaries
    Bedggood, P ; Metha, A (OPTICAL SOC AMER, 2012-12-01)
    Imaging the retinal vasculature offers a surrogate view of systemic vascular health, allowing noninvasive and longitudinal assessment of vascular pathology. The earliest anomalies in vascular disease arise in the microvasculature, however current imaging methods lack the spatiotemporal resolution to track blood flow at the capillary level. We report here on novel imaging technology that allows direct, noninvasive optical imaging of erythrocyte flow in human retinal capillaries. This was made possible using adaptive optics for high spatial resolution (1.5 μm), sCMOS camera technology for high temporal resolution (460 fps), and tunable wavebands from a broadband laser for maximal erythrocyte contrast. Particle image velocimetry on our data sequences was used to quantify flow. We observed marked spatiotemporal variability in velocity, which ranged from 0.3 to 3.3 mm/s, and changed by up to a factor of 4 in a given capillary during the 130 ms imaging period. Both mean and standard deviation across the imaged capillary network varied markedly with time, yet their ratio remained a relatively constant parameter (0.50 ± 0.056). Our observations concur with previous work using less direct methods, validating this as an investigative tool for the study of microvascular disease in humans.
  • Item
    Thumbnail Image
    Limitations to adaptive optics image quality in rodent eyes
    Zhou, X ; Bedggood, P ; Metha, A (OPTICAL SOC AMER, 2012-08-01)
    Adaptive optics (AO) retinal image quality of rodent eyes is inferior to that of human eyes, despite the promise of greater numerical aperture. This paradox challenges several assumptions commonly made in AO imaging, assumptions which may be invalidated by the very high power and dioptric thickness of the rodent retina. We used optical modeling to compare the performance of rat and human eyes under conditions that tested the validity of these assumptions. Results showed that AO image quality in the human eye is robust to positioning errors of the AO corrector and to differences in imaging depth and wavelength compared to the wavefront beacon. In contrast, image quality in the rat eye declines sharply with each of these manipulations, especially when imaging off-axis. However, some latitude does exist to offset these manipulations against each other to produce good image quality.
  • Item
    Thumbnail Image
    A Three-Dimensional Atlas of the Honeybee Neck
    Berry, RP ; Ibbotson, MR ; Giurfa, M (PUBLIC LIBRARY SCIENCE, 2010-05-24)
    Three-dimensional digital atlases are rapidly becoming indispensible in modern biology. We used serial sectioning combined with manual registration and segmentation of images to develop a comprehensive and detailed three-dimensional atlas of the honeybee head-neck system. This interactive atlas includes skeletal structures of the head and prothorax, the neck musculature, and the nervous system. The scope and resolution of the model exceeds atlases previously developed on similar sized animals, and the interactive nature of the model provides a far more accessible means of interpreting and comprehending insect anatomy and neuroanatomy.
  • Item
    Thumbnail Image
    Edge Detection in Landing Budgerigars (Melopsittacus undulatus)
    Bhagavatula, P ; Claudianos, C ; Ibbotson, M ; Srinivasan, M ; Warrant, E (PUBLIC LIBRARY SCIENCE, 2009-10-07)
    BACKGROUND: While considerable scientific effort has been devoted to studying how birds navigate over long distances, relatively little is known about how targets are detected, obstacles are avoided and smooth landings are orchestrated. Here we examine how visual features in the environment, such as contrasting edges, determine where a bird will land. METHODOLOGY/PRINCIPAL FINDINGS: Landing in budgerigars (Melopsittacus undulatus) was investigated by training them to fly from a perch to a feeder, and video-filming their landings. The feeder was placed on a grey disc that produced a contrasting edge against a uniformly blue background. We found that the birds tended to land primarily at the edge of the disc and walk to the feeder, even though the feeder was in the middle of the disc. This suggests that the birds were using the visual contrast at the boundary of the disc to target their landings. When the grey level of the disc was varied systematically, whilst keeping the blue background constant, there was one intermediate grey level at which the budgerigar's preference for the disc boundary disappeared. The budgerigars then landed randomly all over the test surface. Even though this disc is (for humans) clearly distinguishable from the blue background, it offers very little contrast against the background, in the red and green regions of the spectrum. CONCLUSIONS: We conclude that budgerigars use visual edges to target and guide landings. Calculations of photoreceptor excitation reveal that edge detection in landing budgerigars is performed by a color-blind luminance channel that sums the signals from the red and green photoreceptors, or, alternatively, receives input from the red double-cones. This finding has close parallels to vision in honeybees and primates, where edge detection and motion perception are also largely color-blind.