Optometry and Vision Sciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    Thumbnail Image
    Identifying Cell Class Specific Losses from Serially Generated Electroretinogram Components
    Nguyen, CTO ; Vingrys, AJ ; Wong, VHY ; Bui, BV (HINDAWI LTD, 2013)
    PURPOSE: Processing of information through the cellular layers of the retina occurs in a serial manner. In the electroretinogram (ERG), this complicates interpretation of inner retinal changes as dysfunction may arise from "upstream" neurons or may indicate a direct loss to that neural generator. We propose an approach that addresses this issue by defining ERG gain relationships. METHODS: Regression analyses between two serial ERG parameters in a control cohort of rats are used to define gain relationships. These gains are then applied to two models of retinal disease. RESULTS: The PIII(amp) to PII(amp) gain is unity whereas the PII(amp) to pSTR(amp) and PII(amp) to nSTR(amp) gains are greater than unity, indicating "amplification" (P < 0.05). Timing relationships show amplification between PIII(it) to PII(it) and compression for PII(it) to pSTR(it) and PII(it) to nSTR(it), (P < 0.05). Application of these gains to ω-3-deficiency indicates that all timing changes are downstream of photoreceptor changes, but a direct pSTR amplitude loss occurs (P < 0.05). Application to diabetes indicates widespread inner retinal dysfunction which cannot be attributed to outer retinal changes (P < 0.05). CONCLUSIONS: This simple approach aids in the interpretation of inner retinal ERG changes by taking into account gain characteristics found between successive ERG components of normal animals.
  • Item
    Thumbnail Image
    Relationship between the Magnitude of Intraocular Pressure during an Episode of Acute Elevation and Retinal Damage Four Weeks later in Rats
    Bui, BV ; Batcha, AH ; Fletcher, E ; Wong, VHY ; Fortune, B ; Libby, R (PUBLIC LIBRARY SCIENCE, 2013-07-29)
    PURPOSE: To determine relationship between the magnitude of intraocular pressure (IOP) during a fixed-duration episode of acute elevation and the loss of retinal function and structure 4 weeks later in rats. METHODS: Unilateral elevation of IOP (105 minutes) was achieved manometrically in adult Brown Norway rats (9 groups; n = 4 to 8 each, 10-100 mm Hg and sham control). Full-field ERGs were recorded simultaneously from treated and control eyes 4 weeks after IOP elevation. Scotopic ERG stimuli were white flashes (-6.04 to 2.72 log cd.s.m(-2)). Photopic ERGs were recorded (1.22 to 2.72 log cd.s.m(-2)) after 15 min of light adaptation (150 cd/m(2)). Relative amplitude (treated/control, %) of ERG components versus IOP was described with a cummulative normal function. Retinal ganglion cell (RGC) layer density was determined post mortem by histology. RESULTS: All ERG components failed to recover completely normal amplitudes by 4 weeks after the insult if IOP was 70 mmHg or greater during the episode. There was no ERG recovery at all if IOP was 100 mmHg. Outer retinal (photoreceptor) function demonstrated the least sensitivity to prior acute IOP elevation. ERG components reflecting inner retinal function were correlated with post mortem RGC layer density. CONCLUSIONS: Retinal function recovers after IOP normalization, such that it requires a level of acute IOP elevation approximately 10 mmHg higher to cause a pattern of permanent dysfunction similar to that observed during the acute event. There is a 'threshold' for permanent retinal functional loss in the rat at an IOP between 60 and 70 mmHg if sustained for 105 minutes or more.
  • Item
    Thumbnail Image
    Using the Electroretinogram to Understand How Intraocular Pressure Elevation Affects the Rat Retina
    Bui, BV ; He, Z ; Vingrys, AJ ; Nguyen, CTO ; Wong, VHY ; Fortune, B (HINDAWI LTD, 2013)
    Intraocular pressure (IOP) elevation is a key risk factor for glaucoma. Our understanding of the effect that IOP elevation has on the eye has been greatly enhanced by the application of the electroretinogram (ERG). In this paper, we describe how the ERG in the rodent eye is affected by changes in IOP magnitude, duration, and number of spikes. We consider how the variables of blood pressure and age can modify the effect of IOP elevation on the ERG. Finally, we contrast the effects that acute and chronic IOP elevation can have on the rodent ERG.
  • Item
    Thumbnail Image
    Susceptibility of Streptozotocin-Induced Diabetic Rat Retinal Function and Ocular Blood Flow to Acute Intraocular Pressure Challenge
    Wong, VHY ; Vingrys, AJ ; Jobling, AI ; Bui, BV (ASSOC RESEARCH VISION OPHTHALMOLOGY INC, 2013-03)
    PURPOSE: To consider the hypothesis that streptozotocin (STZ)-induced hyperglycemia renders rat retinal function and ocular blood flow more susceptible to acute IOP challenge. METHODS: Retinal function (electroretinogram [ERG]) was measured during acute IOP challenge (10100 mm Hg, increments of 5 mm Hg, 3 minutes per step, vitreal cannulation) in adult Long-Evans rats (6 weeks old; citrate: n = 6, STZ: n = 10) 4 weeks after citrate buffer or STZ (65 mg/kg, blood glucose >15 mM) injection. At each IOP, dim and bright flash (-4.56, -1.72 log cd x s x m(-2)) ERG responses were recorded to measure inner retinal and ON-bipolar cell function, respectively. Ocular blood flow (laser Doppler flowmetry; citrate: n = 6, STZ: n = 10) was also measured during acute IOP challenge. Retinas were isolated for quantitative PCR analysis of nitric oxide synthase mRNA expression (endothelial, eNos; inducible, iNos; neuronal, nNos). RESULTS: STZ-induced diabetes increased the susceptibility of inner retinal (IOP at 50% response, 60.1, CI: 57.0-62.0 mm Hg versus citrate: 67.5, CI: 62.1-72.4 mm Hg) and ON-bipolar cell function (STZ: 60.3, CI: 58.0-62.8 mm Hg versus citrate: 65.1, CI: 61.9-68.6 mm Hg) and ocular blood flow (43.9, CI: 40.8-46.8 versus citrate: 53.4, CI: 50.7-56.1 mm Hg) to IOP challenge. Citrate eyes showed elevated eNos mRNA (+49.7%) after IOP stress, an effect not found in STZ-diabetic eyes (-5.7%, P < 0.03). No difference was observed for iNos or nNos (P > 0.05) following IOP elevation. CONCLUSIONS: STZ-induced diabetes increased functional susceptibility during acute IOP challenge. This functional vulnerability is associated with a reduced capacity for diabetic eyes to upregulate eNos expression and to autoregulate blood flow in response to stress.